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Abstract

Pay-as-bid (or discriminatory) auctions are frequently used to sell homogenous
goods such as treasury securities and commodities. We prove the uniqueness of their
pure-strategy Bayesian Nash equilibrium and establish a tractable representation of
equilibrium bids. Building on these results we analyze the optimal design of pay-as-
bid auctions, as well as uniform-price auctions (the main alternative auction format).
We show that supply transparency and full disclosure are optimal in pay-as-bid, though
not necessarily in uniform-price; pay-as-bid is revenue dominant and might be welfare
dominant; and we provide an explanation for the revenue equivalence observed in
empirical work.
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1 Introduction
Each year, securities and commodities worth trillions of dollars are allocated through multi-
unit auctions. Pay-as-bid is one of two main auction formats for these sales, the other format
being uniform-price. Pay-as-bid is often used to sell treasury securities and to distribute
electricity generation. It is also used in government operations such as large-scale asset
purchases in the U.S. (quantitative easing), and it is implicitly run in financial markets
when limit orders are followed by a market order.1

Despite their economic importance, relatively little is known about equilibrium behavior
in pay-as-bid auctions. Accordingly, little is known about the design problem faced by
the pay-as-bid auctioneer: for instance, what is the optimal reserve price, and how does
transparency about supply affect the seller’s revenue? Furthermore, what explains the rough
revenue equivalence of pay-as-bid and uniform-price auctions found in empirical work?2

This paper addresses these open questions in environments in which the bidders are
symmetrically informed, an assumption that is approximately satisfied in many multi-unit
auction environments.3 For example, the value of a treasury security can be inferred from
the prices of its close substitutes and from the forward contracts on the current issue traded
ahead of the auction. The U.K. Debt Management Office highlights this feature of the
informational environment in which it sells British gilt-edged securities, noting in its guide
that:

“There are often similar gilts already in the market to allow ease of pricing [...]
This suggests that bidders are not significantly deterred from participation by
not knowing what the rest of the market’s valuation of the gilts on offer is” [UK
DMO, 2012].

In empirical analyses, Hortaçsu et al. [2018] argue that bidders in U.S. Treasury auctions
of short-term securities are nearly symmetrically informed, Armantier and Lafhel [2009]
argue that bidders in Bank of Canada auctions are essentially symmetric, and Hattori and

1Pay-as-bid auctions are also referred to as discriminatory, or multiple-price auctions. OECD [2021] finds
that 25 of 37 countries surveyed allocate securities via pay-as-bid auctions; Brenner et al. [2009] find that
33 of 48 countries surveyed use pay-as-bid. Del Río [2017] finds that 27 of 31 markets surveyed distribute
electricity generation via pay-as-bid auction (see also Maurer and Barroso [2011]). In all these studies most
of the remaining markets are cleared by uniform-price auction and in some markets both formats are used.
For financial markets, see, e.g., Glosten [1994].

2Pay-as-bid auction equilibria have been constructed in parameterized environments; see our discussion
below. The empirical literature on multi-unit auctions provides no definitive result on which auction format
raises more revenue; Hortaçsu et al. [2018] posit that this is potentially because bidders retain little surplus.

3Our main results are robust to the presence of small informational asymmetries, see our Conclusion for
a discussion.

2



Takahashi [2022] argue the same for bidders for Japanese government bonds.4 While our
assumptions are borne out in some important multi-unit auctions, they are not satisfied in
others: for example, Armantier and Sbaï [2009] argue that bidders in French debt auctions
are asymmetrically informed, and Cole et al. [2022] argue that in Mexican treasury auctions
some bidders are informed (and have virtually identical information) while other bidders are
uninformed.

Although we assume bidders have symmetric information, our results allow any informa-
tional asymmetry between the seller and the bidders. The difference between the seller’s and
the bidders’ information is typical of the problem we study because the seller designs the
auction before—usually substantially before—the bidders submit their bids; the seller may
also want to set a single design for multiple auctions. We allow for uncertainty of the total
supply available for auction as exogenous supply uncertainty is a feature of some securities
auctions, e.g. in the United States [TreasuryDirect, 2022] and Japan [Hattori and Takahashi,
2022].5 We allow an arbitrary number of bidders and general demands, and thus provide
a substantively more general treatment than previous analyses, which relied on either large
markets or strong parametric assumptions (cf. Swinkels [2001], Ausubel et al. [2014], and
the discussion below).

A starting point for our analysis of equilibria is Theorem 1, which determines the lowest
equilibrium market-clearing price. This price bound and our subsequent design insights are
valid whether or not we allow mixed strategy-equilibria (cf. Appendix A), but our theory of
equilibrium bidding in pay-as-bid auctions focuses on pure-strategy equilibria. We prove that
pure-strategy equilibrium is unique (Theorem 2), in contrast with the substantial equilibrium
multiplicity present in uniform-price auctions [Wilson, 1979, Klemperer and Meyer, 1989,
Wang and Zender, 2002].6 In this unique equilibrium, each bidder responds to stochastic

4In addition, our result that in absence of substantive uncertainty bids in the pay-as-bid auction are
approximately flat, provides a test of the symmetric information assumption. Another natural test of the
symmetry assumption is the difference between auction price and the subsequent secondary market price. Bid
flatness and small primary- and secondary-market price differences has been observed in treasury auctions
in several countries, see Section 7 for a discussion.

5We discuss the exogenous randomness in more detail in Section 5. In the context of securities, U.S.
Treasury auction regulations do not provide for the announcement of noncompetitive demand prior to the
submission of competitive bids [Garrison et al.], and in Swiss Treasury auctions supply is not announced
[Ranaldo and Rossi, 2016]. An analogous uncertainty over auctioned demand is a feature of many spot
electricity auctions, where demand is determined by the current state of electricity usage; cf. Federico and
Rahman [2003], Hortaçsu and Puller [2008], and U.S. Federal Energy Regulatory Commission [2020], among
others.

6Uniqueness plays a major role in empirical studies of pay-as-bid auctions. Estimation strategies based on
the first-order conditions, or the Euler equation, rely on agents playing comparable equilibria across auctions
in the data (Février et al. [2002], Hortaçsu and McAdams [2010], Hortaçsu and Kastl [2012], and Cassola
et al. [2013]). Equilibrium uniqueness plays an even larger role in the study of counterfactuals (see, e.g.,
Armantier and Sbaï [2006] and Armantier and Sbaï [2009]).
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residual supply (that is, the supply given the bids of the remaining bidders), and a best
response picks points on the realizations of residual supply. In determining a best response,
the bidder needs to keep in mind that, in a pay-as-bid auction, a bid is paid not only when
it is marginal (at the clearing price) but also whenever it is strictly above the clearing price.
We show that despite these subtleties the equilibrium bids have an unexpectedly tractable
closed-form representation: the bid for a unit is a weighted average of marginal values on
this and higher units (Theorem 3). We also establish a sufficient condition for the existence
of equilibrium (Theorem 4); our condition is satisfied when, e.g., there are sufficiently many
bidders and their marginal values are smooth.

Turning to design questions, we establish the seller maximizes revenue by transparently
setting the auction’s aggregate supply.7 Specifically, revenue in the unique pure-strategy
equilibrium is maximized when supply is deterministic (Theorem 5). Thus determining the
optimal supply distribution is equivalent to the simpler problem of a monopolist who sets a
price and a quantity cap.8 In some treasury auctions—e.g. in U.S. uniform-price auctions
and Japanese pay-as-bid auctions (cf. Section 5.2)—the distribution of supply is partially
determined by the demand from non-competitive bidders, and treasuries and central banks
retain only partial ability to influence supply distributions but may have pertinent supply
information prior to the auction. We therefore also address the question of how much data
on non-competitive bids a revenue-maximizing seller should release, and show that the seller
wants to commit to fully reveal the realization of supply prior to soliciting bids (Theorem
6).9 These principles of transparent design simplify the design of pay-as-bid auctions in a
way that does not carry over to the design of uniform-price auctions; for the latter we show
that neither deterministic supply nor information release are necessarily revenue-optimal
(Lemma 1).10

7We focus on sellers whose objective is revenue maximization. For example, the U.K. Debt Management
Office’s primary objective in security auctions is, “to minimise over the long term, the costs of meeting
the Government’s financing needs,” and the U.S. Treasury’s primary objective in security auctions is, “to
finance the government at the lowest cost over time.” [United Kingdom Debt Management Office, 2012, U.S.
Department of the Treasury, 2019].

8In the main text we focus on the seller setting reserve price and distribution of supply in pay as bid; in
Appendix A we show that our insights are valid for sellers setting a distribution over elastic supply curves
provided bidders’ values satisfy a Myerson-like regularity assumption.

9For the optimality of revealing other relevant information, cf. our supplementary note, Pycia and
Woodward [2023a].

10The reason is the multiplicity of equilibria in uniform-price auctions. Specifically, these auctions admit
equilibria with a wide range of revenues; see, e.g., Kremer and Nyborg [2004], LiCalzi and Pavan [2005],
McAdams [2007], Burkett and Woodward [2020b], and Marszalec et al. [2020]. Depending on the auctioneer’s
concern about equilibrium selection, anticipated revenue may improve with some randomization, see our
Lemma 1. Equilibrium in the optimally designed uniform-price auction becomes unique (and revenue-
equivalent to pay-as-bid) if the seller knows the bidders’ information; cf. Corollary 6. The empirical impact
of transparency has been extensively studied in the context of over-the-counter markets; for a recent review
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Leveraging our design results, we are able to compare revenues in optimally-designed
pay-as-bid and uniform-price auctions. We prove that the pay-as-bid format always raises
weakly higher revenue than the uniform-price format (Theorem 7).11 In effect, a revenue-
maximizing seller would run a uniform-price auction only if its revenue equaled that of
pay as bid; we may thus expect counterfactual analysis from uniform-price auctions chosen
by revenue-maximizing sellers to find approximate revenue equivalence. Another reason
for the revenue equivalence to obtain is if bidders in uniform-price bid truthfully for the
marginal unit, a semi-truthful strategy assumed by some major empirical studies comparing
revenues between pay-as-bid and uniform-price auctions.12 In this way, our results provide
a theoretical explanation for the approximate revenue equivalence found in the empirical
literature we discuss in Section 7.

Our design analysis is focused on pay-as-bid and uniform-price auctions as these are the
two formats treasuries typically choose between. In principle, other mechanisms are possible.
For example, the correlation present in environments we study enables surplus extraction
mechanisms proposed by Myerson [1981] and Crémer and McLean [1988] in which bidders
are induced to reveal their valuations by being charged for differences in their reports, thus
allowing the auctioneer to charge prices extracting nearly all surplus; such mechanisms are
sensitive to collusion and not observed in practice. Or, the government, which has access to
similar macroeconomic data as the bidders, might estimate and post optimal prices. Prior
to the Great Depression, fixed-price mechanisms were employed by, for instance, the U.S.
Treasury, and led to problems such as regular over-subscription, indicating that prices were
set too low.13 A common economic explanation of such government underpricing problems is
the capture of policy-makers by bank lobbies, cf. Buchanan et al. [1980], Laffont and Tirole
[1993] and Dal Bó [2006]. Competitive auctions help the auctioneer avoid such underpricing
problems.14

of this literature see e.g. Garratt et al. [2019]. The impact of transparency in uniform-price auctions has
been experimentally studied by Hefti et al. [2019].

11This revenue comparison extends to any deterministic distribution of supply, with the same proof,
provided supply is identical in both auctions. The welfare comparison depends on the environment and
equilibrium selection in uniform price.

12See e.g. Hortaçsu and McAdams [2010] and Marszalec [2017], and our discussion below. Bidding truth-
fully for the marginal unit can be—but does not need to be—supported in an equilibrium of an optimally-
designed uniform-price auction. Bids that are robust to informational uncertainty, an equilibrium selection
inspired by Klemperer and Meyer [1989], are not semi-truthful in this sense, cf. Appendix G.1.

13Garbade [2008] provides an overview, but stops short of explaining the reasons for the low prices.
14In a symmetric-information environment, the auctioneer could also try to extract all bidder surplus by

(for example) holding a first-price auction for the entire aggregate quantity and then allowing the winner to
subdivide and resell the awarded allocation. However, market cornering has proved problematic in treasury
auctions [Jegadeesh, 1993], and such “all-or-nothing” mechanisms are therefore politically infeasible. Similar
arguments may be posed against many other exotic and nonstandard allocation mechanisms. The general
divisible-good revenue maximization question was addressed by Maskin and Riley [1989], whose optimal
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In total, our results make a case in favor of implementing pay-as-bid over uniform-price.
Our model is stylized, and there are many aspects of real-world auctions it fails to capture,
e.g., term structure [Klemperer, 2010], bidder asymmetry [Armantier and Sbaï, 2009, Cole
et al., 2022, Pycia and Woodward, 2023b], restrictions on permissible bids [Kastl, 2012], pre-
auction investments (including information acquisition) [Bergemann and Välimäki, 2002,
Arozamena and Cantillon, 2004, Gershkov et al., 2021], entry [Bulow and Klemperer, 1996,
Allen et al., 2022], reputational incentives [Marszalec et al., 2020], and distribution of rents
[Pycia and Woodward, 2023b]. Nonetheless, we show that pay-as-bid has substantive ad-
vantages over uniform-price that have not been previously recognized.

1.1 Literature

Our bound on equilibrium prices is the first such bound that applies to all pure-strategy
equilibria, as well as the first such bound that allows for mixed-strategy equilibria. The
special cases of our bound are implicit in the equilibrium constructions in the parametric
examples of pay-as-bid we discuss below.15

There is a large literature on equilibrium existence in pay-as-bid auctions. Linear equi-
libria have been constructed in the linear-Pareto examples we discuss below. In our more
general symmetric-information environment, Holmberg [2009] proves the existence of equi-
librium when the distribution of supply has a decreasing hazard rate, and recognizes the
possibility that pure-strategy equilibrium may not exist.16 Our sufficient condition for exis-
tence encompasses Holmberg’s prior conditions and is substantially milder.17

Uniqueness was studied by Wang and Zender [2002], who prove the uniqueness of symmet-
ric equilibria in which bids are piecewise continuously-differentiable functions of quantities
and supply is invertible from equilibrium prices under strong parametric assumptions of lin-
ear utilities and unbounded Pareto distributions. In a linear-Pareto environment in which
mechanism is quite complex.

15A different bound, in terms of competitive markets, was obtained by Swinkels [1999] for large economies.
Our bound is valid in all finite markets.

16See Genc [2009] and Anderson et al. [2013] for discussions of potential problems with equilibrium exis-
tence.

17In asymmetric information settings, Athey [2001], McAdams [2003], and Reny [2011] have shown that
equilibrium exists in multi-unit (discrete) pay-as-bid auctions, and Woodward [2019] established existence
in the asymmetric-information analogue of the divisible-good model we study. A key difference between
these papers and ours is that the presence of private information allows the purification of mixed-strategy
equilibria; such purification is not possible in the symmetric-information setting. For equilibrium existence
in multi-unit auctions, see also Břeský [1999], Jackson et al. [2002], Reny and Zamir [2004], Jackson and
Swinkels [2005], McAdams [2006], Armantier et al. [2008], Břeský [2008], and Kastl [2012]. Milgrom and
Weber [1985] show existence of mixed-strategy equilibria.
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the maximum supply strictly exceeds the maximum total quantity the bidders are willing to
buy, Holmberg [2009] proved the uniqueness of symmetric equilibria in which bid functions
are twice differentiable.18 Ewerhart et al. [2010] and Ausubel et al. [2014] independently
expand these analyses to Pareto supply with bounded support and show the uniqueness of
equilibria in which bids are linear functions of quantities. In contrast, we look at all Bayesian
Nash equilibria of our model, we impose no parametric assumptions, and we do not require
that some part of the supply is not wanted by any bidder.19

Our uniqueness result is also related to Klemperer and Meyer [1989] who established
uniqueness in a duopoly model closely related to uniform-price auctions: when two symmetric
and uninformed firms face random demand with unbounded support, then there is a unique
equilibrium in their model.20 The main difference between the two papers is, of course, that
Klemperer and Meyer analyze the uniform-price format, while we look at pay-as-bid.21

Our bid representation theorem may be seen as a finite-market counterpart of Swinkels
[2001], who studies pay-as-bid and uniform-price auctions in large markets; in the limit,
as the number of bidders goes to infinity, our representations are equivalent. He restricts
attention to equilibria that are asymptotically environmentally similar, an assumption we do
not impose. Our contribution also lies in establishing the representation of bids as averages
of marginal values in all finite markets and not only in the limit. Holmberg [2009] derives
a closed-form representation for symmetric and smooth equilibria subject to constraints on
supply. We make no such assumptions, and instead prove that equilibria are symmetric
and smooth; our results therefore provide support for his analysis and our finite-market
representation of bids as weighted averages of marginal values is new.

18Holmberg’s assumption that bidders do not want to buy part of the supply represents a physical con-
straint in the reverse pay-as-bid electricity auction he studies: in his paper bidders supply electricity and face
capacity constraints, and beyond a certain level they cannot produce more. This low-capacity assumption
drives the analysis and it precludes directly applying the same model in the context of securities auctions in
which bidders are always willing to buy more (provided the price is sufficiently low).

19As a consequence of this generality, we need to develop a methodological approach which differs from
that of the prior literature. McAdams [2002] and Ausubel et al. [2014] have also established the uniqueness
of equilibrium in their respective parametric examples with two bidders and two goods.

20The analogue of their unbounded support assumption is our assumption that the support of supply
extends all the way to no supply. While the two assumptions look analogous they have very different
practical implications. In a treasury auction, for example, a seller can guarantee that with some small
probability the supply will be lower than the target; in fact, in practice the supply is often random and
our support assumption is satisfied. On the other hand, it is substantially more difficult, and practically
impossible, for the seller to guarantee the risk of arbitrarily-large supplies.

21The literature has known since Wilson [1979] that the uniform-price auction may admit multiple equilib-
ria. No similar multiplicity constructions exist for pay-as-bid auctions (recently Cole et al. [2017] have shown
that pay-as-bid may induce multiplicity of equilibrium levels of information acquisition prior to the auction,
though not in the auction itself). The proof of our uniqueness result follows a differential analysis familiar
from uniqueness results for first-price auctions (see, e.g., Lizzeri and Persico [2000], Maskin and Riley [2003],
and Lebrun [2006]), but our analysis establishing the initial condition for the differential analysis is distinct.
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Our bid representation is surprising in the context of prior finite-market literature, which
can be naturally read as suggesting that pay-as-bid equilibria are complex. Prior construc-
tions of finite-market equilibria focused on the setting in which bidders’ marginal values are
linear in quantity and the distribution of supply is some instance of the generalized Pareto
distribution; see Wang and Zender [2002], Federico and Rahman [2003], Hästö and Holmberg
[2006], Holmberg [2009], Ewerhart et al. [2010], and Ausubel et al. [2014].22 This literature
expressed equilibrium bids in terms of the intercept and slope of the linear demand and the
parameters of the generalized Pareto distribution. Our general treatment avoids the com-
plexity inherent in expressing bids in terms of parameters of the functional forms studied in
the earlier literature.23

Our transparency result—that deterministic selling strategies are optimal—may appear
familiar from the no-haggling theorem of Riley and Zeckhauser [1983]. However, in multi-
object settings the reverse has been shown by Pycia [2006] and Manelli and Vincent [2006];
and, as we show in our Lemma 1, nondeterministic supply may have a role in uniform-price
auctions. Furthermore, there is a subtlety specific to pay-as-bid that might suggest a role
for randomization: by randomizing supply below the monopoly quantity, the seller forces
bidders to compete and bid more for these quantities, and in pay-as-bid the seller collects
the raised bids even when the realized supply is near the monopoly quantity. We show that,
despite these considerations, committing to deterministic supply is indeed optimal.24

Our full disclosure result may at first glance appear to be a consequence of Milgrom
and Weber’s [1982] celebrated linkage principle; the linkage principle is however known to
fail in the multi-unit auction context (cf. Perry and Reny [1999] and Vives [2010]) and our
disclosure result relies instead on our bound on revenues in pay-as-bid auctions with random
supply. Furthermore, while our setting is one of Bayesian persuasion and information design,
the full disclosure we establish stands in stark contrast to Kamenica and Gentzkow’s [2011]
paradigmatic insight that in information design and Bayesian persuasion the sender wants
to withhold—or obfuscate—information. Related to information design, Bergemann et al.

22We focus our discussion on settings with decreasing marginal utilities; for constant marginal utilities see
Back and Zender [1993] and Ausubel et al. [2014].

23The difficulty in constructing an equilibrium in pay as bid is two-fold. In equilibrium, each bidder
responds to the stochastic residual supply (that is, the supply given the bids of the remaining bidders)
and in determining her best response, a bidder needs to keep in mind that: (i) A bid that is marginal if a
particular residual supply curve is realized is paid not only when it is marginal, but also in any other state
of nature that results in a larger allocation, and hence the bidder faces tradeoffs across these different states
of nature; and (ii) Bid curves need to be weakly decreasing in quantity, potentially a binding constraint.

24Recently Chen et al. [2019] show that individual outcomes of a given random mechanism can be replicated
by a deterministic mechanism when there are multiple privately informed participants, while we show that not
only can the maximal revenue generated by any random pay-as-bid auction be obtained by some deterministic
mechanism, but also that this is possible without fundamentally changing the auction mechanism.
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[2017] and Bergemann et al. [2019] also find the optimality of withholding information in
single-unit auctions. This shows that our full disclosure result crucially relies on the specifics
of the pay-as-bid format and the divisibility of the good sold.25

As discussed above the relevant design questions are the choice between the two standard
auction mechanisms, pay-as-bid and uniform-price, and the design of their reserve, supply,
and information. Design issues have been addressed in the context of uniform-price auction.
The design analysis of uniform-price has focused on preventing collusive equilibria: Fabra
[2003] and Marszalec et al. [2020] show that collusion is easier in uniform price than in
pay as bid; however Klemperer and Meyer [1989] point out that the auctioneer can induce
competition in a uniform-price auction by introducing slight randomness in supply, Kremer
and Nyborg [2004] look at the role of tie-breaking rules, LiCalzi and Pavan [2005] and Burkett
and Woodward [2020b] at elastic supply, McAdams [2007] at commitment, and Burkett and
Woodward [2020a] at the role of price selection. By proving equilibrium uniqueness for pay-
as-bid we show its resilience to equilibrium collusion, thus providing a pay-as-bid counterpart
for this literature.26 We also contribute to this uniform-price literature directly by showing
that not only the seller but also the bidders might be made worse off by the possibility of
tacit collusion; the reason is that the seller who expects a collusive equilibrium in uniform-
price auction might optimally respond by setting a high reserve price, thus recovering some
of the revenue at the cost of bidders’ surplus.

Our revenue and welfare comparisons between pay-as-bid and uniform-price auctions con-
tribute to the rich discussion of the pros and cons of these two formats. Swinkels [2001] fo-
cused on equilibria satisfying an asymptotic environmental similarity assumption and showed
that pay-as-bid and uniform-price are revenue- and welfare-equivalent in large markets; Jack-
son and Kremer [2006] find revenue- and welfare- equivalence in large market limit under
the assumption that the proportion of supply to the number of bidders vanishes to zero; our

25In single-unit auctions bidders necessarily have full information regarding the quantity supplied, and
the auctioneer’s role in information design is inherently limited. Fang and Parreiras [2003] and Board [2009]
study the limits of the linkage principle and the resulting benefits of information withdrawal or obfuscation.
The optimality of obfuscation generally obtains in setting in which the participation constraints are interim
and the seller cannot charge for information (cf. Bergemann and Pesendorfer [2007]). Even if the seller can
charge for information, obfuscation is shown to be optimal by Li and Shi [2017] except under orthogonality
assumptions of Eső and Szentes [2007]. Obfuscation is also established in other settings in which—like in our
auction setting—the sender’s interest (more revenue) is fundamentally misaligned with the bidders’ interests
(reducing payment); in a global games context see, e.g., Li et al. [2023]. For analysis of bidders’ investment
in information acquisition in auctions see e.g. Persico [2000] who finds that bidders in first-price auctions
acquire more value-relevant information than bidders in second-price auctions. Finally, while we study a
seller/sender who is able to commit to a disclosure strategy, our disclosure result immediately implies that
a sender unable to commit would also fully reveal supply information. For information disclosure under no
commitment see e.g. Grossman and Hart [1980] and Milgrom [1981].

26Relatedly, the empirical analysis of Häfner [2020] suggests that there is no collusion in the Swiss import
permit pay-as-bid auctions.
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equivalence result does not rely on the size of the market, nor on an environmental similarity
assumption, nor on extreme competition among bidders. Wang and Zender [2002] find pay-
as-bid revenue superior in the equilibria of the complete-information linear-Pareto model
their consider, and Woodward [2021] extends this dominance to mixed-price combinations
of pay-as-bid and uniform-price auctions. Ausubel et al. [2014] show that—with ex-ante
asymmetric bidders with flat demands—either format can be revenue superior.27 In aggre-
gate, prior theoretical work on the pay-as-bid versus uniform-price question has focused on
revenue comparisons for fixed supply distributions and has allowed for neither reserve price
nor supply optimization; indeed, the previous studies of pay-as-bid auctions with decreasing
marginal values employed parametric specifications that did not support the analysis of de-
sign questions. Thus the earlier work could not address whether a well-designed pay-as-bid
auction is preferable to a well-designed uniform-price auction. We go beyond these earlier
papers both by allowing for the seller’s optimization and by imposing no assumptions on the
seller’s information about the bidders.

Our divisible-good optimal revenue equivalence result provides a benchmark for the long-
standing empirical debate whether pay-as-bid or uniform-price auctions raise higher expected
revenues. This debate has attracted substantial empirical attention, with Hortaçsu and
McAdams [2010] and Barbosa et al. [2020] finding no statistically significant differences
in revenues, Février et al. [2002], Kang and Puller [2008], Armantier and Lafhel [2009],
Marszalec [2017], Mariño and Marszalec [2020], and Hattori and Takahashi [2022] finding
slightly higher revenues in pay-as-bid, and Goldreich [2007], Castellanos and Oviedo [2008],
Armantier and Sbaï [2006], and Armantier and Sbaï [2009] finding slightly higher revenues in
uniform-price. Hortaçsu et al. [2018] argue that the revenues are similar because not much
surplus is retained by bidders.

Our results regarding the selection of auction format have other empirical implications.
We show in our analysis of the auction design game that the auctioneer either strictly prefers
a pay-as-bid auction or is indifferent between the pay-as-bid and uniform-price formats.
All else equal, our model suggests that pay-as-bid auctions should be more prevalent than
uniform-price auctions. This claim is supported by the multi-country surveys of treasury
auctions in Brenner et al. [2009] and OECD [2021], which find that pay-as-bid auctions
are implemented by more than twice as many nations as implement uniform-price auctions,

27When bidders have symmetric or non-flat demands, pay-as-bid is revenue superior in all examples they
consider. The special supply distributions these papers consider are not revenue-maximizing, hence there is
no conflict between their strict rankings and our revenue comparisons. See also Jackson and Kremer [2006]
and Fabra et al. [2006] who find that—with non-optimized supply—either format can be revenue superior,
and Anwar [1999] and Engelbrecht-Wiggans and Kahn [2002] for revenue comparisons with flat demands.
Fabra et al. [2011] show that the two formats may lead to the same investments in capacity. Hinz [2004]
shows revenue equivalence in multi-unit auctions with single-unit demand.
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as well as the analysis of electricity markets in Del Río [2017], which finds that pay-as-bid
auctions represent nearly 90% of auctions for allocating the capacity for renewable electricity
generation.28

2 Example
We preview our results with the following example. Consider n bidders who commonly
observe a signal s, drawn uniformly from an interval [s, s] ⊊ (0, +∞); the bidders’ marginal
values are linear, v(q; s) = s − ρq. Our optimal transparency result (Theorem 5) says that
the optimal pay-as-bid auction consists of deterministic supply Q⋆ and a reserve price R⋆

which solve a classical monopoly problem. In this optimal auction, the equilibrium bids are
essentially unique ((2)) and our general bid construction (Theorem 3) takes a particularly
simple form: the bids are flat and each bidder receives zero margin on their awarded quantity
(cf. also Theorems 1 and (4)). Thus the optimal pay-as-bid auction is determined by

Q⋆PAB =
(

3s + s

8ρ

)
n, R⋆PAB = s + 3s

8
.

Determining an optimal uniform-price auction is hampered by equilibrium multiplicity
(see our discussion in Section 6), since bidders’ choice of equilibrium may depend on the
parameterization of the auction. For consistency, we focus on the unique robust equilibrium
[Pycia and Woodward, 2023a] whose existence is essentially unaffected by perturbations of
supply; this approach was pioneered by Klemperer and Meyer [1989] and became the basis
for subsequent theoretical literature focusing on environments in which robust equilibria take
linear form, cf., e.g., Ausubel et al., 2014. Unlike the pay-as-bid auction, in which optimal
supply and reserve operate essentially independently—bidders either receive their demand
at the reserve price, or pay their marginal value for the supplied quantity—in a robust
equilibrium of the uniform-price auction the reserve price shifts the bids of all bidders, even
those who (in equilibrium) pay above the reserve price. We find the optimal uniform-price
auction numerically.

As we show in our Theorem 7 and illustrate in Table 1 above, the optimal pay-as-
28Among electricity markets surveyed by Maurer and Barroso [2011], about half use pay-as-bid, and most

of the remaining markets use uniform price. In their treasury auctions, large countries such as the U.S.
often rely on uniform price while smaller countries on pay as bid; this difference is consistent with the
example we develop in Section 2, in which the revenue advantage of pay as bid diminishes with the number
of bidders. Counterfactual analysis of uniform-price auctions assumes semi-truthful reporting of values to
obtain an upper bound on unobserved revenue. Our results suggest caution in interpreting this bound as it
is tight only if bidders are playing a seller-optimal equilibrium; otherwise there may be a divergence between
observed revenue and counterfactual predictions.
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Figure 1: Bids in optimal pay-as-bid and uniform-price auctions, with n ∈ {10, 30} bidders.

n 10 20 30 40

E [πUP] /E [πPAB] 97.30% 97.30% 97.89% 98.39%

Table 1: Equilibrium expected revenue in the optimal uniform-price auction, as a fraction
of expected revenue in the optimal pay-as-bid auction, by number of bidders.
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bid auction yields more revenue than the optimal uniform-price auction. This difference
goes to zero as the number of bidders goes to infinity (an insight established by Swinkels,
2001), but as the present example shows for realistically-sized markets the difference may be
substantial.29

3 Model
There are n ≥ 2 bidders, i ∈ {1, ..., n}. Bidder i’s marginal valuation for quantity q is
denoted v(q; s), where s is a signal known by all bidders but not by the seller. The seller
believes that the signal comes from some distribution σ. For any s, we assume that v(·; s)
is strictly decreasing where it is strictly positive, and Lipschitz continuous and almost-
everywhere differentiable. We impose no assumptions on the space of signals s, except that
v(q; ·) is integrable for any q. Variability of the common signal s has no strategic importance
for bidders participating in an auction, and thus when studying the equilibrium among such
bidders in Section 4, we fix s and denote the bidders’ marginal valuation by v(q; s) = v(q).
Bidders’ information plays an important role in the analysis of the seller’s problem in Sections
5 and 6. The seller may not know the bidders’ information if, for example, the seller needs
to commit to the auction mechanism before this information is revealed. Alternatively, the
seller may want to fix a single design for multiple auctions.

To simplify the exposition of the design problem, we normalize the seller’s cost to 0. Our
insights do not hinge on this normalization, and remain valid for any convex increasing cost
function.30 Our design analysis builds on the existence, uniqueness, and bid representation
results for equilibria of the pay-as-bid auction. In our equilibrium analysis we assume that
aggregate supply Q is drawn from distribution F with support [0, Q], and we further assume
that F is Lebesgue absolutely continuous on (0, Q) with continuous density f > 0; in all
results we also allow F with full mass concentrated at one point. Aggregate supply Q is
independent of the bidders’ signal s. Otherwise we impose no global assumptions on F .

In our analysis of auction design, the seller is free to choose any distribution F satisfying
the above conditions, as long as Q ≤ Qmax, where Qmax is the maximum supply available
to the seller.31 The seller also implements a reserve price R ≥ 0. While capping aggregate

29As Table 2 shows, the countries for which we found this information have between 12 and 35 bidders in
their auctions. U.S. Treasury auctions, for example, have roughly 25 bidders; Chinese auctions are an outlier
attended on average by 35 bidders. In some contexts there are more bidders, e.g., the largest auctions we
found, the 2007 European liquidity auctions, were attended by about 340 bidders.

30The reason why more general cost functions do not substantively change the analysis is that it builds
on the transparency insight of Theorem 6, and this theorem (and its proof) is valid irrespective of seller’s
cost function. Our supplementary note Pycia and Woodward [2023a] provides a more detailed discussion.

31We could allow for infinite Qmax as long as the optimal monopoly quantity remains finite. This would
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supply Q and setting the reserve price R play similar roles in the seller’s design problem,
our analysis shows that both of these instruments are needed to maximize revenue when
the environment is sufficiently rich, e.g., as in the example of Section 2.32 When the seller
employs both of these instruments, the quantity that is allocated is equal to Q if the reserve
is not binding, but it may be lower than Q when the reserve price is binding. For any realized
quantity Q ≤ Q and bidders’ signal s, denote QR (Q, s) = Q for reserve price R = 0 and
QR (Q, s) = min

{
Q,
∑

i=1,...,n v−1 (R; s)
}

for R ∈ (0, v(0; s)], where v−1 (·; s) is the inverse
function of value given bidders’ signal s (the inverse is well defined for R ∈ (0, v(0; s)]).
Our Theorem 1 below implies that QR (Q, s) is the quantity that is actually allocated. In
particular, when the reserve is binding, the theorem implies that each bidder receives quantity
QR (Q, s) /n = v−1 (R; s). We use Q

R = QR(Q, s) to denote the effective quantity at the
maximum supply Q.

In the pay-as-bid auction, each bidder submits a weakly decreasing bid function bi(q) :
[0, Q] → R+. Without loss of generality we may assume that the bid functions are right
continuous.33 The auctioneer then sets the market-clearing price, also known as the stop-out
price,

p⋆ = max
{
R, sup

{
p′ : q1 + ... + qn ≥ Q for all q1, . . . , qn such that b1 (q1) , ..., bn (qn) ≤ p′

}}
.

If the set over which the supremum is taken is empty, then the stop-out price is set to the
reserve price R. Agents are awarded a quantity associated with their demand at the stop-out
price,

qi = max
{
q′ : bi (q′) ≥ p⋆

}
,

as long as there is no need to ration them. When necessary, we ration pro-rata on the margin,
the standard tie-breaking rule in divisible-good auctions. The details of the rationing rule
have no impact on the analysis of equilibrium bidding.34 The demand function (the mapping

be so if, e.g., the seller faces increasing and convex marginal costs of supply, or there is no heavy tail of
marginal values. In Appendix A, we show—without restrictions to pure strategies, full support, or Lebesgue
continuity—that our design insights remain valid if the seller can choose any distribution over elastic supplies.

32The relative virtues of regulating prices versus quantities have been studied since Weitzman [1974]. The
potential benefit of a hybrid system regulating both prices and quantities was first studied by Roberts and
Spence [1976].

33This assumption is without loss because we study a perfectly-divisible good and we ration quantities
pro-rata on the margin. As the bid function is weakly decreasing, by changing it on measure zero of quantities
we can assure the bid function is right continuous. Such a change has no impact on the bidder’s profit, or
on the profits of any of the other bidders, provided the quantity assigned to each bidder increases when the
stop-out price decreases; a monotonicity property satisfied by tie-breaking pro-rata on the margin. In fact,
there is no impact on bidders’ profits even conditional on any realization of Q.

34In equilibrium, supply equals demand at the stop-out price. All we need in our analysis is that rationing
rule is monotonic in the sense of footnote 33. The resulting independence of equilibrium of specific tie-
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from p to qi) is denoted by φi(·). Where bi(·) is constant, φi is not well-defined and we use
φi and φi to denote the right- and left-continuous inverses of b, φi (p) = sup {q : bi (q) > p}
and φi (p) = sup {q : bi (q) ≥ p}. Agents pay their bid for each unit received, and utility is
quasilinear in monetary transfers; hence,

ui
(
bi
)

=
∫ qi(p⋆)

0
v (x) − bi (x) dx.

The above formal definition lends itself to the interpretation that bidders submit separate
bids for each infinitesimal unit of the good, and the auctioneer first fills the infinitesimal unit
with the highest bid, then the infinitesimal unit with the second-highest bid, etc, until the
realized supply is allocated or there are no more bids above the reserve price.

Our analysis focuses on pure-strategy Bayesian Nash equilibria, and whenever we write
“equilibrium” without any modification we refer to pure-strategy equilibrium. We also in-
clude robustness checks for mixed-strategy equilibria, and in all such results we explicitly
refer to mixed-strategy equilibria.

4 Pay-as-Bid Equilibrium
We focus on pure strategy equilibria, except as otherwise noted. In the analysis we hold
bidders’ common signal s fixed and simplify notation by denoting the bidders’ marginal val-
uation v(q; s) by v (q). We begin the analysis by providing a tight bound on the market price,
then we leverage this bound to provide a closed-form expression for the unique equilibrium
bid profile.

4.1 Minimum Market Price

Our analysis of optimal bidding relies on the following key theorem in which we allow mixed-
strategy equilibria.

Theorem 1. [Minimum Market Price] In any mixed-strategy equilibrium of the pay-
as-bid auction, the market clearing price for the effective maximum quantity Q

R is, with
probability 1, given by

p
(
Q

R
)

= v
( 1

n
Q

R
)

.

As we allow mixed strategies, p
(
Q

R
)

is a priori a random variable; part of the theorem’s
claim is that it is deterministic. Since probability-zero changes to bidding strategies and
breaking rules is in stark contrast to uniform-price auction, where tie-breaking matters; see Kremer and
Nyborg [2004].
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q

Figure 2: In equilibrium, bids must equal values at the maximum quantity which can be
received (Theorem 1). Otherwise, a small upward deviation can obtain a discretely greater
quantity (hashed area) at minimal additional cost (lined area).

measure-zero changes to bids have no effect on utility or incentives, without loss of generality
in the sequel we assume that, for all bidders i,

bi(QR
/n) = p(QR) = v(QR

/n),

and we treat these quantities as deterministic. Furthermore, Theorem 1 allow us to speak
unambiguously about the minimum market-clearing price (given the fixed signal s), p =
v(QR

/n).35 The equality of the market price at the maximum supply and each bidder’s
marginal value at the last unit they receive is illustrated in Figure 3.

The intuition for this theorem is that a bidder with a strictly positive margin at the
maximum feasible quantity could slightly increase their bid and obtain a non-negligible
additional quantity at minimally higher price, which would be a profitable deviation. Figure
2 illustrates this intuition and the proof of Theorem 1 (in Appendix D) formalizes it, taking
care of technical complications related to mixed strategies, tie-breaking, flat bids, and binding
monotonicity constraints. Of course, this intuition applies only to the maximum quantity at
which the increased bid is paid only when it is marginal; at any lower quantity the increased
bid would need to be paid also when inframarginal, hence bids will in general be below values
for lower quantities.

Theorem 1 plays a crucial role in the equilibrium uniqueness result for symmetrically
35Theorem 1 determines the minimum market price because the market price is weakly decreasing in total

quantity sold (an implication of bids being weakly decreasing in quantity), and hence the market price is
minimized at effective maximum supply Q

R. The market-clearing price at supply lower than Q
R can (and

frequently does) rise above the lower bound v(QR
/n).
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informed bidders we state next, and therefore in many of our subsequent results.

4.2 Existence, Uniqueness, and Bid Representation

We first show that equilibrium is unique and tractable whenever it exists. The existence
of equilibrium can then be analyzed in terms of what equilibrium strategies must be, if
an equilibrium exists. We therefore defer discussion of existence until after our uniqueness
and representation results, and for expositional simplicity our uniqueness and representation
results are formulated conditional on the existence of Bayesian Nash equilibrium. Proofs of
all results may be found in Appendix E.

We focus on relevant quantities, by which we mean the quantities that a bidder can win
with positive probability in equilibrium. We say that an equilibrium is essentially unique
if the set of relevant quantities and the bids on relevant quantities are the same in all
equilibria; in particular, the market-clearing price, payments, and allocations conditional
on the realization of supply is then the same in all equilibria; bids for quantities which the
bidder never receives do not need to be uniquely determined.

Theorem 2. [Uniqueness] The Bayesian Nash equilibrium is essentially unique.

To get a sense why this theorem obtains, note that if we restricted attention to symmetric
and smooth equilibria satisfying the first order condition (which we do not), then uniqueness
would follow from Theorem 1. Indeed, in a symmetric smooth equilibrium bidders’ first-
order conditions give us an ordinary differential equation and Theorem 1 provides us with
a unique initial condition for this equation by uniquely determining the price p(QR) at the
maximum supply and hence, in a symmetric equilibrium, the bids for quantity Q

R
/n. The

proof builds on this idea and addresses the difficulties raised by potential asymmetries, non-
differentiabilities, and discontinuities.36

Our analysis of uniqueness allows us to construct equilibrium bidding strategies, which
turn out to be surprisingly tractable. We formulate the strategies using the auxiliary concept
of a weighting distribution (discussed after the theorem): for any quantity Q ∈ [0, Q), the

36Our uniqueness result stands in contrast to nonuniqueness results in uniform-price auctions (cf. Klem-
perer and Meyer [1989]) and in Bertrand competition with convex costs (cf. Weibull [2006]). We discuss
uniform-price auctions in Section 6. In Bertrand competition, convex costs correspond to our decreasing
marginal value curve. We obtain uniqueness where Bertrand competition allows nonuniqueness because our
bidders’ strategy space is larger. In particular, Bertrand competitors who undercut must supply all market
demand whether or not doing so is profitable, while our bidders may submit a limit bid which yields them
only as much quantity as they desire. For a discussion of uniqueness in Bertrand competition see, e.g.,
Burguet and Sákovics [2017].
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n-bidder weighting distribution has c.d.f.

F Q,n (x) = 1 −
(

1 − F (x)
1 − F (Q)

)n−1
n

.

Note that F Q,n has support [Q, Q] and increases from 0 when x = Q to 1 when x = Q;
further discussion of F Q,n follows our bid representation result.

Theorem 3. [Bid Representation] The essentially unique equilibrium is symmetric. For
any quantity q ∈ [0, Q

R
/n], the bid bi of each bidder i is given by

bi (q) =
∫ Q

nq
v

min
{
x, Q

R
}

n

 dF nq,n (x) . (1)

We impose no assumptions on symmetry of equilibrium bids, their strict monotonicity,
nor continuity or differentiability; we derive all these properties. Because the unique equilib-
rium is symmetric, the bid functions allow us to express the market price for any realization
of supply Q ∈ [0, Q] as

p (Q) = bi
(

Q

n

)
=
∫ Q

Q
v

min
{
x, Q

R
}

n

 dF Q,n (x) . (2)

Furthermore, when the reserve price does not bind, formulas (1) and (2) simplify, as Q
R = Q

and min
{
x, Q

R
}

= x; in this case the equilibrium bid equation can be rewritten as

bi (q) =
∫ Q

R

nq
v
(

x

n

)
dF nq,n (x) .

When the reserve price is binding, R > v
(
Q
)
, the bid function is the same as if the supply

was distributed on
[
0, Q

R
]

with a mass point at Q
R.

The weighting distributions depend only the number of bidders and the distribution
of supply, and not on any bidder’s true demand. As the number of bidders increases the
weighting distributions put more weight on lower quantities. In the limit, on its support
F Q,n(x) converges to F (x)−F (Q)

1−F (Q) ; that is, to the distribution of supply conditional on it being
above Q. We can re-express the bid function in terms of per-capita supply as

b (q) =
∫ Q

per capita

q
max

{
v (x) , v

(
Q

R,per capita
)} f per capita (x)

1 − F per capita (q)

(
n − 1

n

)(1 − F per capita (q)
1 − F per capita (x)

) 1
n

dx,
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where Q
per capita = Q/n, Q

R,per capita = Q
R

/n, F per capita (q) = F (nq) and f per capita is this c.d.f.’s
density. When the number of bidders becomes large, holding per capita supply constant, the
right-hand multiplicands approach f per capita (x) /(1 − F per capita(q)), which is the conditional
density at x given that realized per-capita supply is at least q; this limit is approached fairly
rapidly as n−1

n

(
1−F µ(q)
1−F µ(x)

) 1
n approaches 1 rapidly (the impact on bids is depicted in Figure

5). Thus, in the limit, the theorem expresses the bid for quantity q as the average marginal
value for the marginal unit, conditional on receiving quantity above q. In other words, in the
large-n limit the bid on any relevant quantity q is equal to the expected Walrasian market
clearing price conditional on the bidder receiving q, which is the event when changing the
bid for unit q might affect the bidder’s ex post payoff; a corresponding limit economy result
is established in Swinkels [2001]. In the competitive limit the bidder bids away all marginal
rents. Expected utility is still positive since marginal utility is decreasing in quantity, hence
bidding away marginal rents leaves rents for inframarginal units.

Away from the competitive limit, the bidder might retain rents not only on inframarginal
units but also on marginal units. The fewer bidders are in the auction, the more market
power the bidders have and the higher are their rents on marginal units: this is reflected
in the exponent (n − 1)/n in the weighting distribution F Q,n. The equilibrium bids bi are
appropriately-weighted averages of bidders’ marginal values v, and in this they resemble both
the bids in the competitive limit and the bids in first-price auctions with privately-informed
bidders. Because marginal values are decreasing in quantity, bids are below values—that is,
bidders are shading their bids—except for the bid on the effective maximum quantity where
limit equality obtains, an equality consistent with Theorem 1.37

In the special case when supply is deterministic, our bid representation implies that
the bid function is flat on quantities up to Q

R
/n. It can be easily seen that flat bids

can be supported in an equilibrium. Given deterministic supply the bidders know exactly
the quantities they will receive in equilibrium: a deviation increasing the bid for lower
quantities increases the payment to the seller without improving the bidder’s allocation;
a deviation decreasing the bid decreases the allocation and the decrease discourages the
deviation provided opponents’ bids on quantities above Q

R
/n are sufficiently high.

As an example note that when marginal values v are linear and the supply distribution F

is generalized Pareto, F (x) = 1−
(
1 − x

Q

)α
for some α > 0, then our bid representation shows

that the equilibrium bids are linear in quantity. The linear-Pareto case of our general setting
has been analyzed by Ewerhart et al. [2010] and Ausubel et al. [2014], who constructed the
linear equilibrium directly in terms of the slope and incident of demand and the parameters of
the Pareto distribution. Our general results contribute to our understanding of this example

37Wittwer [2018] discusses further intuition behind our representation.
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Figure 3: Equilibrium bids when values are linear and the distribution of supply Q is trun-
cated normal. This and the subsequent figures represent bids, marginal values, and the c.d.f.
of supply; to easily identify the three curves note that bids and the marginal values are
decreasing, bids are below marginal values, and the c.d.f. is increasing.

by allowing us to conclude that the linear equilibrium is essentially unique in the class of
all pure-strategy equilibria, and that bids remain linear in the linear-Pareto setting even in
the presence of a reserve price. Figure 3 illustrates equilibrium bids in a distinct example in
which ten bidders with linear marginal values face a distribution of supply that is truncated
normal.38

Our bid representation theorem allows us to establish when an equilibrium exists because
it derives the unique equilibrium bids on relevant quantities, conditional on equilibrium
existence. When these bids are played in an equilibrium, we can express the expected utility
of a bidder i as

E[ui] =
∫ Q

R
/n

0
U (q; q) dq,

where U : [0, Q
R

/n]2 → R is given by

U (q̂; q) = (v (q) − b (q̂)) (1 − F (q + (n − 1) q̂)) ,

and b is the bid function derived in Theorem 3.39

Theorem 4. [Existence] There exists a pure-strategy Bayesian Nash equilibrium in the
38In all figures, we check our equilibrium existence condition and draw bids numerically using R. In Figure

3 we use a normal distribution with mean 3 and standard deviation 1, truncated to the interval [0, 6].
39This expression for utility can be obtained via integration by parts; see footnote 63.
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pay-as-bid auction whenever, for almost every q ∈ [0, Q/n], the first derivative of U(·; q) is
zero only at the global maxima of U(·; q).

The proof of this theorem extends the bidding strategies bj (q) = b (q) from Theorem 3
beyond relevant quantities q and shows that then

∫Q
R

/n
0 max

q̂∈[0,Q
R

/n] U(q̂; q)dq is an upper
bound on the bidder i’s expected utility for any bidding strategy. This approach allows us
to verify pointwise that b is a best response.

Our sufficient condition is satisfied when, for example, the function U(·; q) is pseudo-
concave, and hence also when U(·; q) is concave. The condition is also satisfied when the
distribution of supply is deterministic. Additionally, our sufficient condition is closed with
respect to several changes of the environment: adding a bidder, making marginal values less
concave (or more convex), and raising the reserve price all preserve existence. In regular
problems, the existence condition is satisfied as soon as there sufficiently many bidders.

Corollary 1. [Existence with many bidders] Suppose marginal values are differentiable
and have slope bounded away from zero, and the density of per-capita supply is bounded away
from 0 on

(
0, Q

)
and has bounded derivative. If there are sufficiently many bidders, then a

pure-strategy Bayesian Nash equilibrium exists.

Regardless of market size, our sufficient condition is satisfied in the aforementioned linear-
Pareto environment and it is satisfied whenever the inverse hazard rate H is increasing—
hence when the hazard rate is decreasing—irrespective of the marginal value function v.40

Our existence condition is satisfied in the examples illustrated in Figures 3-5, which include
a truncated normal distribution, strictly concave marginal values, and reserve prices.

Our existence condition is also satisfied when supply is deterministic. Suppose that
the seller commits to supply quantity Q. As supply is deterministic, the auxiliary density
dF Q,n(x) is equal to 0 for all x < Q, and equilibrium bids are flat; the expression (v(q) −
b(q̂))(1 − F (q + (n − 1)q̂) = U(q̂; q) is therefore constant on q̂ ∈ [0, Q

R
/n]. Recall that we

independently verified the existence of equilibrium in the deterministic case in our discussion
of Theorem 3.

While our sufficient condition shows that equilibrium exists in many cases of interest,
there are situations in which the equilibrium does not exist; see our discussion in the Intro-
duction.

40The existence of equilibrium in the linear-Pareto environment was established by Ewerhart et al. [2010]
and Ausubel et al. [2014] for bounded generalized Pareto distributions and Wang and Zender [2002], Federico
and Rahman [2003], and Holmberg [2009] for unbounded Pareto distributions. The sufficiency of decreasing
hazard rate for equilibrium existence was established by Holmberg [2009]. Theorem 4 also implies the
existence results of Jackson and Swinkels [2005] and of Jackson and Kremer [2006], who showed that an
equilibrium exists in the limit as per-capita supply goes to zero.
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Figure 4: Bids are flatter for more concentrated distributions of supply.

4.3 Comparative Statics

Our bid representation implies that supply concentration leads to flat bids and low mar-
gins on bids near the per-capita concentrated quantity. We say that a distribution is δ-
concentrated near quantity Q∗ if 1 − δ of the mass of supply is within δ of quantity Q∗.

Corollary 2. [Flat Bids] For any ε > 0 and quantity Q∗ there exists δ > 0 such that, if
supply is δ-concentrated near Q∗ ≤ Q

R, then the equilibrium bids for all quantities lower
than Q∗

n
− ε are within ε of v

(
Q∗

n

)
.

Bid concentration is especially straightforward to see in large markets, where bidders can
affect their allocation but not the market-clearing price. In a large market each bidder picks
the price they are willing to pay for each quantity, net of the unwillingness to overpay for
this quantity when it is inframarginal. When per capita supply is concentrated at Qµ∗, there
is at worst a small probability that quantity Qµ∗ will be inframarginal, hence the bidder is
willing to pay nearly v(Qµ∗).

Figure 4 depicts the flattening of equilibrium bids predicted by Corollary 2, in a moderately-
sized market; in the three sub-figures ten bidders face supply distributions that are increas-
ingly concentrated around the total supply of 6 (per capita supply of 0.6). In the special
case of deterministic supply, which is 0-concentrated, Corollary 2 implies that equilibrium
bids are perfectly flat.

The practical implications of Corollary 2 may be observed in U.S. Treasury auctions for
short-term securities. Hortaçsu et al. [2018] show that in these auctions supply randomness is
low, and empirically-observed uniform-price bids are nearly flat. Because supply randomness
is low, Corollary 2 implies that counterfactual pay-as-bid bids would also be nearly flat, and
changing the auction format would yield little additional revenue.41

41Hortaçsu et al. [2018] use inferred marginal values to show that bidders do not obtain much surplus;
thus changing the auction format cannot yield much additional revenue. Our corollary goes beyond their
analysis by showing that given flat uniform-price bids and relatively certain supply, changing the auction
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Theorem 4 implies that if equilibrium exists in two component markets, then it exists in
the merged market. Our bid representation further implies that bidders’ equilibrium margins
are lower and the seller’s revenue is higher when there are more bidders:

Corollary 3. [More Bidders and Marketplace Mergers] Bidders submit higher bids,
the seller’s revenue is higher, and each bidder’s profits smaller when there are more bidders—
both when the supply distribution is held constant, and when the per-capita supply distribution
is held constant. In particular, the sum of revenues from markets with n1 and n2 bidders
and the same per-capita supply distribution is less than the revenue from the joint market
with n1 + n2 bidders.

The corollary follows because as the number of bidders increases, 1−F Q,n (x) =
(

1−F (x)
1−F (Q)

)n−1
n

decreases, and hence F Q,n (x) increases, thus mass in the weighting distribution is shifted
towards lower x, where marginal values are higher. At the same time, the marginal value at
x either increases in n (if we keep the distribution of supply constant) or stays constant (if
we keep the distribution of per-capita supply constant). Our bid representation also implies
that when within-market per capita supply is similar across divided markets, merging the
markets will improve total revenue; however, if the two markets have substantially different
per capita supply, then merging them might decrease total revenue. Similar market-merger
conclusions have been derived for uniform-price auctions, cf., e.g., Rostek and Yoon [2021],
Fabra and Llobet [2021], Wittwer [2021]. On the other hand, Theorem 5 below implies that
with optimal supply in both markets (and both markets having at least two bidders each),
merging the markets will have no effect on revenue if the per-capita supply is the same in
the markets being merged; if the per-capita supply differs across these markets than the
merger increases the revenue if bidders’ true marginal demands are concave but decreases
the revenue if the true marginal demands are convex.

While bidders raise their bids when facing more bidders even if the per-capita distribu-
tion stays constant, our bid representation theorem implies that the changes are small; the
intuitive reason is that as the number of bidders goes to infinity, our equilibrium construc-
tion converges to that in the large-market analysis of [Swinkels, 2001].42 This is illustrated
in Figure 5 in which increasing the number of bidders from 5 bidders to 10 bidders has only
a small impact on the bids, as does the further increase from 10 bidders to 5 million bidders.

format also cannot cost much revenue. See Section 7 for further discussion of flat bids.
42If we keep the supply distribution fixed while more and more bidders participate in the auction, then in

the large market limit revenue converges to average supply times the value on the initial unit. See Swinkels
[2001] for limit results with fixed per-capita supply and Jackson and Kremer [2006] for limit results with
fixed supply.
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Figure 5: Bids go up when more bidders arrive (and per capita quantity is kept constant)
but not by much: 5 bidders on the left, 10 bidders in the middle, and 5 million bidders on
the right. Note that all axis scales are identical.

5 Designing Pay-as-Bid Auctions: Transparency and
Disclosure

In this section we maintain the assumption that the pay-as-bid format is run and analyze the
design of such auctions. We focus on the reserve price and the distribution of supply, the two
natural elements of pay-as-bid auction that the seller can select, and we continue to impose
the assumptions applied in the equilibrium analysis of Section 4.2; in particular we restrict
attention to pure-strategy equilibria.43 In Appendix A, we relax all these assumptions while
also allowing elastic supply and mixed-strategy equilibria, and show that our results on
transparency (Theorem 5) and disclosure (Theorem 6) remain valid.

As design decisions are taken from the seller’s perspective, our terminology in this and
the subsequent sections now explicitly keeps track of the bidders’ information s.

5.1 Transparency

The key insight that underlies our design analysis is that—in contrast to typical multidimen-
sional mechanism design problems discussed in the introduction—in an optimized pay-as-bid
auction deterministic—and, hence, transparent—supply is optimal. Furthermore, if supply
is exogenously random, then it is optimal for the seller set a deterministic supply cap; and,
independent of whether a supply cap is feasible, it is optimal to announce the realized supply
to the bidders prior to the auction.

43As pay-as-bid is largely employed by central banks and governments, the efficiency of allocations may
be an important concern and a reason a seller may want to ensure that a equilibrium in pure strategies is
being played. The symmetry of equilibrium strategies we prove in Theorem 3 implies that in such equilibria
the marginal value for any unit received is higher than the marginal value for any unit not received. There
are thus no efficiency improving re-allocations of units among bidders; this property trivially fails in any
mixed-strategy equilibrium that is not essentially in pure strategies.

24



First, suppose that the seller has some deterministic quantity Q of the good; we relax
this assumption below. For any fixed reserve price, we consider the problem of designing
a supply distribution F that maximizes the seller’s revenue. The seller has the option to
offer a stochastic distribution over multiple quantities, up to Q. In a treasury auction, a
seller may commit to random supply sold at auction by setting it equal to a total supply net
of sales to non-competitive buyers, a common practice in the treasury auctions in the U.S.
[TreasuryDirect, 2022] and Japan [Hattori and Takahashi, 2022]. It is also plausible that
such randomization could increase the seller’s expected revenue. For instance, stochastically
offering quantities lower than the optimal monopoly quantity Q⋆ (subject to the supply
constraint), results in a tradeoff: the seller sometimes sells less than Q⋆, with a direct and
negative revenue impact, but when he sells quantity close to Q⋆ or higher he may receive
higher payments due to the pay-as-bid nature of the auction. This tradeoff is illustrated in
Figure 4, in which concentrating supply lowers the bids.

We show that selling the deterministic supply Q⋆ is in fact revenue-maximizing; for this
reason in the sequel we refer to Q⋆ as optimal supply.

Theorem 5. [Transparency of Optimal Supply] The seller’s revenue under non-deterministic
supply is strictly lower than under optimal deterministic supply. Optimal deterministic supply
is given by the solution to the monopolist’s problem when facing uncertain demand.

As the following proof sketch indicates, Theorem 5 remains valid if the reserve price is
arbitrary rather than optimized. The theorem also remains valid for sellers who maximize
profits equal to revenue net of costs, provided the marginal cost curve is weakly increasing.
Such sellers optimally choose the deterministic quantity that maximizes the expected revenue
minus cost rather than the quantity that maximizes the expected revenue. Taking the cost
into account affects what quantity is optimal, but it does not change the result that optimal
supply is deterministic.

To prove Theorem 5, we start with an arbitrary reserve price and supply distribution
and the induced pure-strategy equilibrium bids. Holding equilibrium bids fixed, we use our
bid representation from Theorem 3 to bound expected revenue by the standard monopoly
revenue given the supply distribution.44 In effect we obtain the following bound on the
expected revenue,

Es,Q

[
πF (Q; s)

]
≤
∫ Q

R

0
Es

[
πδQ (Q; s)

]
dF (Q) , (3)

44This argument hinges on re-assigning the revenue across supply realizations; in particular, the actual
revenue conditional on a supply realization is not necessarily bounded by the revenue the seller would obtain
by setting the deterministic supply fixed at the conditioning supply realization.

25



where πF (Q; s) is the seller’s revenue when the bidders’ signal is s, the realization of supply
is Q, and bidders bid against the distribution of supply F , while πδQ (Q; s) is the seller’s
revenue when the bidders’ signal is s, the realization of supply is Q, and bidders bid against
the supply distribution δQ that puts probability 1 on quantity Q. Note that πδQ(Q; s) is
a monopolist’s profit from selling quantity Q to buyers with common signal s. This upper
bound implies that the seller’s revenue is maximized when the seller sets the supply to be
always equal to the revenue-maximizing deterministic supply. We provide the details of the
proof in Appendix G (bound (3) above restates inequality (13) in the proof).

The structure of the proof of Theorem 5 has two important implications. First, under
the additional restriction that QEs[v−1(Q; s)] is single-peaked in Q, the proof is applicable
to environments in which the seller’s underlying supply is random and the seller can lower
the supply but cannot increase it above the underlying supply realization. In this more
general environment we assume that the distribution of underlying supply is exogenously
given by F with a compact support.45 Our proof then shows that the revenue-maximizing
supply reduction by the seller reduces supply to Q⋆ whenever the exogenous supply is higher
than Q⋆, and otherwise leaves the supply unchanged. As discussed following Theorem 4 and
Corollary 2, when supply is deterministic bids are flat at level v(Q/n; s).

In Appendix B we extend the transparency theorem to auctioneers whose revenue is the
sum of revenue from the auction (accepted bids of competitive bidders) and revenue from
noncompetitive demand filled at the price determined in the auction.

5.2 Full Disclosure

As an application of our analysis let us note that the seller who runs an auction with random
supply would like to fully reveal the realized supply. For instance, in the United States
[TreasuryDirect, 2022] and Japan [Hattori and Takahashi, 2022], the seller announces joint
supply of debt to be sold in an auction and allocated to noncompetitive bidders, and the
supply sold in an auction is then the residual supply after noncompetitive bidders’ demand is
filled. The seller thus finds transparency optimal both in the sense of setting a deterministic
supply (or supply cap) and in the sense of revealing the seller’s information about supply.

To formalize this full-disclosure insight we enrich our base model as follows. We assume
that the distribution of supply is exogenously given and commonly known. Before learning
the realization of supply, the seller can publicly commit to an auction design (reserve price
and supply restriction) and a disclosure policy; a disclosure policy maps the realization of
supply to a distribution of public announcements (messages) from an arbitrary space of

45The compactness of F ’s support could be replaced by other assumptions that guarantee that the optimal
solution exists, such as for instance that there is a finite q > 0 such that for all s, v(q; s) = 0.

26



messages. After publicly committing to a disclosure policy and an auction design, the seller
learns the realization of supply and announces the message prescribed by the disclosure
policy. Then, the bidders learn their value and bid in the auction.

Theorem 6. [Optimality of Information Disclosure] The seller’s expected revenue is
maximized when the seller commits to fully reveal the realization of supply.

Before presenting a surprisingly simple argument deriving this theorem from our preced-
ing analysis, let us observe that Theorem 6 remains valid even if the seller does not optimize
the reserve price and supply cap in the auction and these parameters of the auction are ar-
bitrarily set, with no change in the proof. In addition, because we prove Theorem 6 for the
environment in which the seller can commit to a disclosure strategy, the same full disclosure
insights a fortiori holds true for environments where the seller cannot commit.

Proof. Suppose that the seller commits to a disclosure strategy and this strategy leads to a
message that induces the bidders to believe that the (conditional) distribution of supply is
F̂ with upper bound of support Q̂. The revenue bound (3) gives

E
[
πF̂ (Q; s)

]
≤
∫ Q̂R

0
Es

[
πδx (x; s)

]
dF̂ (x) ,

and thus expected revenue is bounded above by the expected revenue obtained by the seller
fully revealing to the bidders the realization of supply. In consequence, the seller’s expected
revenue is maximized when the seller ex ante commits to fully reveal the realization of
supply.

As with Theorem 5, an analogue of Theorem 6 remains valid when the seller obtains
revenue from noncompetitive demand, see Appendix B. Furthermore, in the supplementary
note [Pycia and Woodward, 2023a], we show that the revenue-maximizing seller not only
would like to reveal supply information but, if the seller has information relevant for bidders’
valuations, the seller would like to release it as well.46

5.3 The Contrast with Uniform Price

The optimality of transparency and full revelation hinges on using the pay-as-bid format. In
uniform-price auctions, it can be optimal to randomize supply and not disclose the realiza-
tion of randomness; Section 6 defines these auctions and shows that a wide range of supply

46The New York Federal Reserve asked one of us (Pycia) what supply and demand related information to
disclose to the bidders in US liquidity auctions. The NY Fed practice was to disclose as little as possible,
while Mark Carney of the Bank of England advocated for transparent disclosure. Our results support the
disclosure.
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randomizations might be optimal. One reason to use randomization is to prevent a form of
tacit collusion that has been observed in uniform price auctions. For instance, Harbord and
Pagnozzi [2014] discuss the revelation of demand information in uniform-price procurement
auctions for power generation capacity in Colombia and in New England, and Schwenen
[2015] discusses uniform-price procurement for power capacity in New York; these papers
show that the price in these auctions can be determined by tacit collusion, where submitted
bids are too low to be profitably undercut on the margin (these papers study procurement
auctions, in which bidding low corresponds to bidding high in our model). Increasing the
randomness of supply could benefit the seller by breaking this equilibrium. Analogous equi-
libria do not occur in pay-as-bid, because the fringe bidders would need to pay their high
bids (or sell at the low bids).

6 The Auction Design Game: Pay-as-Bid Dominates
Uniform-Price

Sellers of homogeneous goods are not constrained to use pay-as-bid auctions. As we discuss
in the Introduction, sellers usually choose between implementing a pay-as-bid auction or
implementing a uniform-price auction, and which of these two formats is preferred remains
an important open question. Earlier comparisons of these formats did not take the seller’s
endogenous choices into account. In this section we explicitly model the seller’s choice
between pay-as-bid and uniform-price formats, as well as among supply distributions and
reserve prices, as an extensive-form game.

As in Section 5 we focus on the reserve price and the distribution of supply and we
continue to impose the assumptions applied in the equilibrium analysis of Section 4.2; in
particular we restrict attention to pure-strategy equilibria. In Appendix A, we show that
our revenue comparisons (Theorem 7 and Corollary 5) remain valid after we relax all these
assumptions and allow any random elastic supply and any mixed-strategy equilibria.

This auction design game has two stages. In the first stage, the seller commits to a
reserve price, a distribution of supply, and the auction format (pay-as-bid or uniform-price).
We also consider constrained design games in which the auction format is fixed; we refer
to these as pay-as-bid design game and uniform-price design game. In the second stage,
bidders participate in the specified auction.47 We consider perfect Bayesian equilibria of

47The bid functions bi (·; s, R, F ) depend on the bidders’ signal as well as the auction format and the reserve
prices R and supply distributions F chosen by the seller. When there is no risk of confusion, when referring
to the bids on the equilibrium path we sometimes suppress the seller’s choices. Explicitly modeling both
stages of the design game allows us to study the feedback loop between mechanism design and equilibrium
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these games. This structure allows us to compare outcomes of optimally designed pay-as-bid
and uniform-price auctions, and to discuss the economic implications of mechanism selection.
Our main insight is that choosing pay-as-bid is weakly dominant for the seller.

6.1 Uniform-Price Auctions

As discussed above, uniform-price auctions are the main alternative to the pay-as-bid auction
format. In the uniform-price auction, the space of feasible bids, the market-clearing price
p⋆, and allocations qi are defined in the same way as in pay-as-bid (see Section 3). The only
feature distinguishing the two formats is the bidders’ payment rule: instead of paying their
own bids, in the uniform-price format each bidder i pays a constant market price per unit,
hence bidder i’s payment is p⋆qi.

As mentioned in Section 5.3, in a uniform-price auction it may be optimal to commit to
random supply. A key reason this might happen is the failure of equilibrium uniqueness in
uniform price. Because bidders’ continuation equilibrium can be selected based on the cho-
sen distribution of supply, it is possible that choosing deterministic supply will yield lower
revenue than random supply: when bidders play a low-revenue equilibrium when supply is
deterministic (or close to deterministic), and play a high-revenue equilibrium otherwise, the
seller may optimally concentrate the supply distribution around the deterministic optimum
while retaining some randomness to ensure that bidders submit aggressive bids. The con-
struction of such equilibria relies on the value space being rich in the following sense: the set
{s : v(Q⋆/n; s) > R⋆} has positive probability for all deterministic supply and reserve pairs
(Q⋆, R⋆) that maximize monopoly revenue,

(Q⋆, R⋆) ∈ arg max
Q,R

RE
[
nv−1 (R; s)

∣∣∣v (Q/n; s) < R
]

Pr (v (Q/n; s) < R)

+ QE [v (Q/n; s)|v (Q/n; s) ≥ R] Pr (v (Q/n; s) ≥ R) . (4)

Richness rules out the complete information case, which we discuss separately in Corollary
6.

Lemma 1. [Quantity and Reserve in Uniform Price] Suppose the value space is rich

selection. The presence of this feedback loop gives our analysis more predictive power than the standard
focus on the bidding stage alone. For instance, the Perfect Bayesian Equilibria do not allow designs that
lead to revenues lower than the max-min second-stage revenue, where the max is taken over designs and
min over second-stage equilibria. The explicit modeling of both stages also allows us to formally state when
revenue-maximizing sellers choose uniform price auction (Corollary 5). At the same time, the two-stage
approach is equivalent to the focus on the bidding (second) stage when the auction has unique equilibrium
(as in pay as bid) or when we restrict attention to a uniquely selected equilibrium (e.g. robust equilibria of
Section 6.1).
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and let R⋆PAB and Q⋆PAB be optimal reserve and supply in the pay-as-bid design game. There
is ε > 0 such that for all reserve prices R ∈ [R⋆PAB −ε, R⋆PAB +ε] and all supply distributions
F with support in [Q⋆PAB − ε, Q⋆PAB + ε], there is an equilibrium of the uniform-price design
game in which the designer selects reserve R and supply distribution F .

The proof builds on the construction of two equilibria classes:

• Robust equilibrium, defined as a profile of strategies that is an equilibrium for all
distributions of supply; the existence and uniqueness of such an equilibrium follows
from Klemperer and Meyer [1989]; and

• Semi-truthful equilibria, defined as equilibria at which bUPA(QR
/n; s) = v(QR

/n; s).

Appendix G.1 constructs both these equilibria classes and shows that, under the richness
assumption, the expected revenue from the robust equilibrium following any reserve and
supply distribution is strictly lower than (and bounded away from) the expected revenue
from a semi-truthful equilibrium following reserve R⋆PAB and deterministic supply Q⋆PAB.
The perfect Bayesian equilibrium implementing reserve R and supply distribution F is then
constructed as follows. If the seller sets R and F then, in the continuation game, bidders play
the constructed semi-truthful equilibrium. If the seller sets different reserve or different dis-
tribution of supply then, in the continuation game, the bidders play the robust equilibrium,
which has comparatively low bids. As ε goes to 0, the expected revenue in the semi-truthful
continuation equilibrium approximates that in the semi-truthful continuation equilibrium
following reserve R⋆PAB and supply Q⋆PAB. As the difference between the expected revenue
in robust and semi-truthful equilibria following R⋆PAB and Q⋆PAB is bounded away from zero,
for all R and F within sufficiently small ε of R⋆PAB and Q⋆PAB (respectively), the expected
revenue from setting R and F is strictly higher than the revenue from any other reserve and
supply distribution.

6.2 Revenue

For the pay-as-bid auction, Theorem 2 states that equilibrium bids are essentially unique
conditional on the distribution of supply, and Theorem 5 states that optimal supply is
deterministic. Together these theorems imply that equilibrium revenue is unique in the
pay-as-bid design game.

Corollary 4. [Revenue in Pay-as-Bid Design Game] In the pay-as-bid design game
with symmetrically informed bidders, the perfect Bayesian equilibrium revenue is uniquely
determined and the seller can achieve it by setting optimal deterministic supply.
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Revenue analysis of the uniform-price design game is more complicated: as we have
seen in the previous subsection randomness might be optimal on the path of a particular
equilibrium. Despite this we show in Lemma 16 in Appendix G that the maximum revenue
in uniform-price design game is obtained in a perfect Bayesian equilibrium in which the seller
sets the same reserve price and deterministic supply as in revenue-maximizing pay as bid. In
consequence, any equilibrium of the uniform-price game generates weakly less revenue than
the unique expected revenue in any equilibrium of the pay-as-bid design game.

Theorem 7. [Revenue Comparison of Design Games] The expected revenue of the
pay-as-bid design game is weakly greater than the expected revenue in any equilibrium of the
uniform-price design game.

The revenue comparison is strict for all uniform-price equilibria in which bidders are not
semi-truthful. The non-semitruthful equilibria are typical in the sense that in the uniform-
price auction, for any reserve R, supply distribution F , and signal s, the set of prices at
maximum supply Q

R that are supportable in equilibrium is the interval [R, v(QR(s)/n; s)].
In particular, robust equilibria are not semi-truthful and the ranking of pay as bid and
uniform price becomes strict for robust equilibria. At the same time, there is a semi-truthful
equilibrium of the uniform-price design game that generates the same expected revenue as
the unique equilibrium revenue of the pay-as-bid design game. The theorem and these claims
remain valid for any deterministic distribution of supply; for their proofs see Appendix G.

Theorem 7 implies that in the auction design game in which the designer chooses either
a pay-as-bid or uniform-price format, and its reserve price and supply distribution, the seller
will either implement a pay-as-bid auction or, expecting the bidders to bid semi-truthfully
in uniform price, is indifferent between the two formats.

Corollary 5. [Revenue Equivalence across Perfect Bayesian Equilibria] All perfect
Bayesian equilibria of the auction design game are revenue equivalent. Furthermore, the
seller either implements a pay-as-bid auction or is indifferent between the pay-as-bid and
uniform-price auctions.

Finally, when the seller has access to the bidders’ information at the time the auction
is designed, the optimal pay-as-bid auction is outcome-equivalent to simply posting the
monopoly-optimal price. Because posting the monopoly-optimal price is also feasible in
the uniform-price auction, it follows that when there is symmetric information between the
buyers and the seller, the pay-as-bid and uniform-price formats are revenue equivalent when
optimally designed.
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Corollary 6. [Revenue Equivalence with an Informed Seller] When the buyers’ signal
s is known to the seller, then the optimally designed uniform-price auction has a unique
equilibrium, and this equilibrium is revenue-equivalent to the optimal pay-as-bid auction.

7 Relationship to Empirical Findings
As discussed in the Introduction, an extensive empirical literature studies the use of the
pay-as-bid and uniform-price auctions in real-world settings. Our model and main results
correspond to empirical features observed across these studies. First, while empirical work
provides no clear guidance on which of the pay-as-bid or uniform-price auction formats raises
greater expected revenue in general, Table 2 shows that, across studies where supply random-
ness is reported, pay-as-bid dominates when supply randomness is small. This observation
is consistent with our transparency result (Theorem 5), which shows that when supply is
deterministic the pay-as-bid auction raises strictly greater revenue than all but the seller-
optimal equilibrium of the uniform-price auction (a result whose robustness to the presence of
asymmetric information we verify in the supplementary note Pycia and Woodward [2023a]).

An important prediction of our model is that bids are approximately flat when outcomes
are relatively certain (Corollary 2); conversely, when outcomes are relatively uncertain bid-
ders will hedge against low allocations by bidding more aggressively for low quantities. Given
a bidder’s uncertainty, flatness is a property of best-responses and does not hinge on the
bids being in equilibrium. We can use this prediction to test the validity of the assumption
that bidders are approximately symmetrically informed. Bid flatness has been observed in
empirical analyses of European liquidity pay-as-bid auctions prior to the crisis of 2007 [Cas-
sola, Hortaçsu, and Kastl, 2013], as well as Canadian [Hortaçsu and Sareen, 2005], South
Korean [Kang and Puller, 2008], Chinese (Barbosa et al., 2020, and Yoshimoto, 2021, private
communication), and Polish (Marszalec, 2017, and Marszalec, 2021, private communication)
pay-as-bid treasury auctions, indicating that bidders face little relevant asymmetric infor-
mation or other uncertainty in these auctions.48 Another natural test of the symmetry
assumption is the difference between auction price and the subsequent secondary market
price; this difference is small in auctions for which we found data (on average 0.04% of the
clearing price in Finnish auctions studied by Keloharju et al. [2005], and on average 0.09%

48The New York Times [1929] reports that flat bids were observed in pay-as-bid U.S. Treasury auctions
as early as the 1920s. The yield tail—the difference between the average accepted yield and the market-
clearing yield—in U.K. Conventional Gilt auctions between March 2021 and March 2023 was 1.14bp (own
calculation), consistent with relevant bids being flat. In addition, Hortaçsu et al. [2018] observe flat bids in
uniform-price U.S. Treasury auctions.
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Paper Data Method σ/µ # Bidders Conclusion
Marszalec [2017] Poland PAB → CF UP 0.00% 12.3 PAB > UP

Barbosa et al. [2020] China Controlled exp. 0.00% 35.2 PAB ≈ UP
Février et al. [2002] France PAB → CF UP 1.27% 20.8 PAB > UP

Armantier and Sbaï [2006] France PAB → CF UP 3.78% 19.0 UP > PAB
Hattori and Takahashi [2022] Japan Natural exp. 11.00% no data PAB > UP

Umlauf [1993] Mexico Natural exp. 11.16% 24.7 UP > PAB
Mariño and Marszalec [2020] Philippines Natural exp. 17.60% 20.3 PAB > UP

Table 2: Revenue comparisons between auction formats, in comparison to the standard
deviation of noncompetitive demand scaled by mean aggregate supply (Q); “CF” is “coun-
terfactual.”

of the clearing price in U.K. Conventional Gilt auctions (own calculation)).49

Our results on the auction design game suggest that the auctioneer’s choice of auction
format will carry information about which auction format yields greater revenue. Cross-
country comparisons find that both pay-as-bid and uniform-price auctions are popular (see
OECD [2021] and Brenner et al. [2009] for treasury securities, Maurer and Barroso [2011] for
electicity generation, and Del Río [2017] for electricity generation capacity), and our results
provide a theoretical explanation for the popularity of the pay-as-bid format. Our Theorem
3 and Proposition 1 imply that, in large competitive markets, pay as bid and robust bids in
uniform price will raise similar revenue, while in smaller markets pay as bid is likely to be
revenue dominant.50 Of course, our predictions are only a baseline, and the auctioneer may
be interested in outcomes beyond revenue.

Finally, Corollary 5 provides an explanation of the empirical finding that revenues in
pay-as-bid are close to the counterfactual revenues in uniform price, as discussed in the Intro-
duction. The explanation is twofold. First, the Corollary shows that a revenue-maximizing
seller weakly prefers the uniform-price format only if this format is equivalent to pay as
bid. The South Korean Treasury auctions studied by Kang and Puller [2008] and U.S. Trea-
sury auctions studied by Hortaçsu, Kastl, and Zhang [2018] run the uniform-price format

49We apply Keloharju et al.’s methodology to U.K. Conventional Gilt sales between March 2021 and
March 2023 for which the market-clearing price is available. Note that, unlike the gap between primary- and
secondary-market prices, even a slight amount of asymmetric information might induce significant asymme-
tries in bidders’ ex post allocations. Hence the presence of such asymmetries would not falsify the (nearly)
symmetric information assumption. As we prove in our companion note Pycia and Woodward [2023a], such
asymmetries have no substantive impact on revenue or the choice of revenue-maximizing mechanism; in
particular, the approximate analogue of revenue-equivalence Corollary 5 continues to hold.

50In our supplementary note [Pycia and Woodward, 2023a] we provide a large market revenue equivalence
result, consistent with earlier large market results, cf. Swinkels [2001]. Our bid representations go further
by making explicit the dependence of bids on the number of bidders (cf. Corollary 3).
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and hence Corollary 5 provides a potential explanation of the revenue equivalence found in
these papers. Second, the optimal pay-as-bid and uniform-price auctions generate the same
revenue only in the seller-optimal equilibrium of the uniform-price auction and this is pre-
cisely the equilibrium in which bids are equal to marginal values at realized quantities. The
latter equality is imposed in counterfactual revenue estimation of uniform-price auctions in
Hortaçsu and McAdams [2010] and Marszalec [2017] which assume truthful bidding in the
uniform-price auction; as these papers discuss, the imposed assumption results in an upper
bound on uniform-price revenue. The counterfactual assumption of truthful bidding in the
uniform-price auction is likely to bias expected revenues upwards when supply randomness
is high as implied by the equilibrium analysis of Klemperer and Meyer [1989]; when supply
randomness is low pay as bid is approximately revenue equivalent to truthful bidding in
uniform price. The theory thus suggests that the empirical ambiguity of cross-mechanism
revenue comparison might be tied to sellers’ endogenous selection of auction format and to
the counterfactual strategy selection in the empirical literature.

8 Conclusion
We have studied multi-unit auctions in an environment in which bidders have symmetric
information, but the seller (or auction designer) is potentially much less informed. We have
established a mild condition for equilibrium existence as well as established equilibrium
uniqueness and provided a tractable representation of bids. We hope that the tractability of
our representation will stimulate future work on this important auction format.

We have used these results to analyze the design problem of the seller. In particular,
we established that revenue-maximizing pay-as-bid auctions generate more revenue than
uniform-price auctions, and strictly more revenue in most cases; welfare comparisons are in-
herently ambiguous. In particular, it is possible that revenue-maximizing pay-as-bid auctions
are not only revenue- but also welfare- superior to uniform-price auctions.

As part of our analysis we established revenue equivalence between revenue-maximizing
pay-as-bid auctions and the revenue-maximizing equilibrium of uniform-price auctions. Our
revenue equivalence benchmark—which we prove both for optimally-designed auctions and
for deterministic supply—provides an explanation for the empirical findings of approximate
revenue equivalence between the two formats.

In our supplementary note Pycia and Woodward [2023a], we show that all our design
results are robust to the presence of small informational asymmetries among bidders. An
analogue of Theorem 1 continues to hold in asymmetric information environments, and
we use it to bound the revenue differences in the pay-as-bid auction between symmetric-
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information and asymmetric-information environments: analogously to Theorem 7 we show
“approximate revenue dominance” of pay-as-bid over uniform-price in environments with
asymmetric information; analogously to Corollary 5 we show that a revenue-maximizing seller
would select uniform price only if expecting it to be approximately revenue-equivalent to pay
as bid. The basic insight that pay-as-bid equilibria in asymmetric information environments
converge to the symmetric information equilibria as the asymmetric information shrinks is
a corollary of Reny [1999].51 In our supplementary note [Pycia and Woodward, 2023a] we
also show that our design results remain valid for sellers with increasing marginal costs;
we study the relationship of the pay-as-bid auctioneer to a classical monopolist and discuss
the connection between the present analysis and dynamic oligopoly; we show that revealing
information on bidders’ values increases seller’s revenue; and we show that the auctioneer’s
design problem is separable, and that the decisions of optimal supply and optimal reserve
may be analyzed independently.

In follow-up work [Pycia and Woodward, 2023b] we analyze the problem of efficient
allocation of permits in emissions markets. The dominance of pay-as-bid over uniform-price,
which we establish in a revenue-maximization context in this paper, holds with respect to
surplus maximization as well. Key to this analysis is an extension of Theorem 1 to settings
where bidders may be ex ante and interim asymmetric. Taken together, our work shows
that the pay-as-bid auction format may have several underappreciated advantages over the
uniform-price auction format.
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A Elastic Supply
In the main text we (mostly) focus on pure strategy-equilibria and on designing a poten-
tially stochastic supply distribution allowing for a separately set reserve price. Our essential
insights remain valid if we allow mixed-strategy equilibria and potentially stochastic elastic
supply curves.

We study a seller who selects a distribution over reserve prices, possibly correlated with
the distribution of quantity. Let K(Q; R) be a supply-reserve distribution, giving the prob-
ability that realized quantity is Q̃ ≤ Q or the realized reserve price is R̃ > R,

K (Q; R) = Pr
(
Q̃ ≤ Q

)
+ Pr

(
Q̃ > Q, R̃ > R

)
.

Conditional on aggregate demand p(·), K(Q; p(Q)) is the probability that realized aggregate
supply is below Q: either realized supply is Q̃ ≤ Q, or realized reserve is R̃ > p(Q) and
quantity is constrained. While K is not a c.d.f., it describes the joint distribution over
quantity and reserve. The following special cases illustrate the supply-reserve distribution
K:

• K is equivalent to a random supply distribution F if K(Q, R) = F (Q);

• K is equivalent to a random reserve distribution F R if K(Q, R) = 1 − F R(R);

• K is equivalent to deterministic supply curve S if K(Q, R) = 1[S(R) < Q].

To key to extending our results to this environment is establishing the analogues of our
uniqueness and transparency results. Equilibrium uniqueness obtains when the elastic supply
curve is deterministic because an analogue of Theorem 1 obtains (see Appendix H for details
of this and other proofs).

44



Theorem 8. [Unique Pay-as-Bid Equilibrium] If the elastic supply is deterministic then
the pay-as-bid auction admits an essentially unique equilibrium.

In the essentially unique equilibrium, all bidders bid their marginal value on the last
allocated unit for all units they receive; they can randomize over their bids on units the do
not receive with no impact on equilibrium outcome.52

Perhaps paradoxically, the main difficulty in proving the optimality of deterministic elas-
tic supply lies in establishing this result for the case when the bidders’ common signal, s, is
known to the seller—that is when it takes a constant value with probability 1.

Lemma 2. [Deterministic Dominance when the Seller Knows Bidders’ Signal]
Suppose bidders’ information is known to the seller. Given any supply-reserve distribution
K, there is a deterministic quantity Q⋆ such that the pay-as-bid auction with fixed supply Q⋆

raises greater revenue than the pay-as-bid auction with supply-reserve distribution K.

We prove this auxiliary complete-information result by studying an auxiliary problem in
which a bidder’s bid satisfies a best-response first order condition but is not necessarily a
best response to the random elastic supply and other bidders’ mixed strategies. We show
that if—counterfactually—the seller was able to set the random supply-reserve distribution
separately for this focal bidder, holding the other bidders’ behavior fixed, then the seller
would optimize this part of the revenue by keeping the quantity allocated to the focal bidder
constant and randomizing only over reserve prices. That is, analyzing constant supply and
random reserve decouples the focal bidder’s best response from strategies of other bidders.
Thus, given the symmetry of the problem, the seller is able to implement such a revenue
maximizing scheme via a pay-as-bid auction with fixed supply and the same random reserve
distribution for all bidders. Leveraging the simplification brought by being able to restrict
attention on random reserve only, we bound the maximum revenue of the seller by the
revenue from a deterministic supply and deterministic reserve pay-as-bid (and uniform-price
with identical supply and reserve).

Having shown that if the seller knew the bidders’ common information, then she can do
no better than set deterministic elastic supply so as to maximize the revenue, it remains to
observe that the seller can obtain this revenue pointwise with an elastic supply curve. This
observation relies on the following notion of regularity.

Definition 1. [Regular Demand] Let S = {(p⋆, q⋆) : ∃s, p⋆ ∈ arg maxp pv−1(p; s), q⋆ =
v−1(p; s)} be the set of optimal monopoly prices. Bidder values are regular if, for any
(p, q), (p′, q′) ∈ S, the inequality p′ < p implies q′ < q.

52Theorem 8 extends to mixed strategies.
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Values are regular if the monopolist’s optimal price and quantity are in monotone cor-
respondence. When values are increasing in signal s (an assumption we do not impose),
demand is regular when p + v−1(p; s)/v−1

p (p; s) is increasing in s. Thus our regularity condi-
tion is similar to the regularity condition in [Myerson, 1981]. When bidder values are regular
the seller can implement optimal reserve and quantity via an elastic supply function even
though the seller does not know the bidders’ information.

Theorem 9. [Deterministic Auctions Are Optimal] When bidder values are regular
then revenue in the pay-as-bid auction is maximized by implementing a deterministic supply
curve. Any mixed-strategy equilibrium of the pay-as-bid auction with any random elastic
supply raises weakly lower revenue than the unique equilibrium of the pay-as-bid auction with
optimal deterministic supply.

Because deterministic elastic supply is not only optimal in pay-as-bid, but also extracts
the same revenue as if the seller knew bidders’ values (but could only set a price), we can
also conclude the following:

Theorem 10. [Pay-as-Bid Revenue Dominance] If bidder values are regular then the
unique equilibrium of the optimal pay-as-bid auction raises weakly more revenue than any
mixed-strategy equilibrium in uniform-price auction with any supply-reserve distribution.

Furthermore, for a generic distribution of values there are multiple equilibria in uniform-
price, and the revenue in a generic uniform-price equilibrium is strictly lower than the revenue
in optimal pay-as-bid. This last point follows from the underpricing equilibrium construc-
tions in, e.g.. Back and Zender [1993] and LiCalzi and Pavan [2005].

Finally, our analysis of optimal elastic supply implies that an analogue of the information
disclosure Theorem 6 remains true under random elastic supply. Recall that in this theorem
the quantity is exogenously realized and the seller has the ability to communicate this cap
to the bidders. Because the optimal elastic supply is constructed point-by-point and does
not depend on the quantity cap other than in the inelastic part of the supply where the cap
is binding, in the current elastic supply setting the seller still wants to set the elastic supply
(where possible) and fully reveal their private information.

Theorem 11. [Optimality of Information Disclosure with Elastic Supply] If the
bidders’ values are regular then the seller’s expected revenue is maximized when the seller
commits to fully reveal the realization of the elastic supply curve.
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B Transparency and Noncompetitive Demand
As an application of our analysis, note that multi-unit auctioneers frequently obtain revenue
not only from competitive bidders but also from noncompetitive bidders who pay a fixed price
determined by the auction’s outcome. For example, in France [Agence France Tr\{}’esor,
2022], the Czech Republic [Ministry of Finance, 2016], , and Korea [Ministry of Economics,
2021] noncompetitive bidders receive supply in addition to the supply that is auctioned to
competitive bidders. When the price paid by noncompetitive bidders is monotone in the
auction’s market-clearing price, our Theorem 5 remains valid.

Corollary 7. [Transparency of Optimal Supply with Noncompetitive Demand] If
the seller sets the distribution of the supply in the auction and the noncompetitive bidders
pay a per-unit price that is weakly increasing in the auction’s market-clearing price, then
the sum of the seller’s revenue from competitive and noncompetitive bidders is maximized by
setting deterministic supply in the auction.

In Corollary 7 we allow the noncompetitive demand Qnc to be random. The corollary
follows from inequality (3). Denote by pF (Qc; s) the equilibrium market-clearing price when
the bidders believe that competitive supply Qc has distribution F , the realized supply is
Qc, and bidders’ signal is s; and let pnc(p⋆) be the price paid by noncompetitive bidders
as a function of the market-clearing price p⋆. Considering payments from both compet-
itive and noncompetitive bidders, the seller maximizes E

[
πF (Qc; s) + pnc ◦ pF (Qc; s) Qnc

]
over F . Inequality (3) provides an upper bound on competitive revenue, E

[
πF (Qc; s)

]
≤∫Q

R

0 Es

[
πδx(x; s)

]
dF (x), and since bids are below values Theorem 1 implies that, given a re-

alized competitive quantity Qc, the equilibrium market-clearing price pF (Qc; s) is lower than
the market price pδQc (Qc; s) when bidders with signal s know that competitive supply is Qc.
Because pnc is monotone in the market-clearing price,

∫QR

0 Es,Qnc

[
πδx (x; s) + pnc ◦ pδx (x; s) Qnc

]
dF (x)

is an upper bound on the seller’s revenue, and in turn is bounded from above by maxQ∈[0,QR] Es,Qnc

[
πδQ (Q; s) + pnc ◦ pδQ (Q; s) Qnc

]
.

The seller can achieve this latter upper bound by setting deterministic supply equal to
arg maxQ∈[0,QR] Es,Qnc

[
πδQ (Q; s) + pnc ◦ pδQ (Q; s) Qnc

]
. Note that this same argument works

when pnc is stochastic and has expectation increasing in the market-clearing price. Corol-
lary 7 and the argument remain valid irrespective of whether noncompetitive demand Qnc

is observed by the seller prior to setting F .
As with Theorem 5, Theorem 6—which shows that if the seller cannot affect the distri-

bution of supply, they would still prefer to announce realized supply—extends to the case
where the seller maximizes the total revenue obtained from not only from the allocation to
competitive bidders who submit demand curves, but also from the noncompetitive bidders
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with inelastic demand. For such a seller, it remains optimal to fully reveal the realization of
supply before competitive bids are submitted as long as the price paid by non-competitive
bidders is a weakly increasing function of the market-clearing price.

Corollary 8. [Optimality of Information Disclosure with Noncompetitive De-
mand] Suppose that noncompetitive demand is Qnc ∼ Fnc, and that competitive supply
is Q − Qnc. If the seller allocates quantity Qnc to noncompetitive bidders at price pnc(p⋆),
which is weakly increasing in the market-clearing price p⋆, the seller’s revenue is maximized
when the seller commits to fully-reveal the realization of noncompetitive demand.

The assumption that the per-unit price paid by noncompetitive bidders is increasing in
the market-clearing price allows for noncompetitive demand to be filled at a fixed price, or
at the market-clearing price, or at a constant markup over the market-clearing price (among
other possibilities).53 In light of Theorem 6, Corollary 8 is straightforward to prove. The
seller’s revenue from competitive bidders is highest when supply is announced before bids
are submitted. Moreover, announcing available supply weakly increases the market-clearing
price, since bids are below marginal values except at the maximum feasible quantity (1).
Then announcing the realization of supply increases the expected revenue from competitive
bidders, and also increases the ex post revenue from noncompetitive bidders.

On the other hand, the incentives of noncompetitive bidders, whose bids generate non-
competitive demand, are opposed to those of the auctioneer. The noncompetitive bidders
would (if possible) commit to not reveal their bids prior to the submission of the compet-
itive bidders’ bids because the revelation of noncompetitive demand weakly increases the
market-clearing price ex post, in turn increasing the per-unit price paid they pay.

C Welfare Ambiguity
The cross-auction comparison of outcomes other than revenue—e.g., bidders’ payoffs and
expected surplus—depends on the perfect Bayesian equilibrium played in the uniform-price
auction.

Theorem 12. [Ambiguous Bidder Welfare Comparison] If the value space is rich then
the uniform-price design game admits perfect Bayesian equilibria in which the payoff of all
bidder types is strictly higher and perfect Bayesian equilibria in which the payoff of all bidder
types is strictly lower than in the unique equilibrium of the pay-as-bid design game.

53In spot electricity markets in which the non-competitive electricity consumers pay exogenous prices which
depend neither on the bids submitted nor the market clearing price in electricity auctions for suppliers, our
Theorem 6 directly implies that the auctioneer wants to reveal the consumers’ demand to the suppliers
bidding in the auction.
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The reason for this ambiguity is that the quantity sold and reserve price in optimal
uniform price can be strictly higher, the same, or strictly lower than in pay as bid, depending
on the equilibrium in uniform price, as we have seen in Lemma 1. If the reserve price R⋆UP

in the uniform-price design game is strictly lower than the optimal pay-as-bid reserve R⋆PAB

and the supply Q⋆UP in uniform price is deterministic and strictly higher than the optimal
pay-as-bid supply Q⋆PAB, then there is an equilibrium of uniform price in which all bidder
types pay R⋆UP for each unit they buy their payoffs are strictly higher than in pay as bid.
If, conversely, R⋆UP > R⋆PAB and Q⋆UP < Q⋆PAB then, irrespective of the equilibrium bids
in uniform price, all bidder types have lower payoffs in uniform-price than in the pay-as-bid
design game.54 In the latter case, for distributions of bidders’ value functions for which the
solution to the monopoly problem (4) is unique (a generic property), the seller’s revenue is
also strictly lower in uniform price. Generically, there are thus equilibria of the uniform-
price design that are strictly worse for all market participants than the essentially unique
equilibrium of the pay-as-bid design game, but not vice versa (cf. Theorem 7).

54Ausubel et al. [2014] established that efficiency and revenue in uniform price can be higher or lower
than in pay as bid depending on utility specification, assuming that the reserve price is zero and supply is
unoptimized. As we study optimized auctions, there is no contradiction between the ambiguity they report
and our revenue dominance, nor are our welfare comparisons are implicit in theirs. The welfare ambiguity
we uncover is driven by equilibrium selection and obtains for all utility specification in every model with
rich values. In contrast, they provide examples of ambiguity that hinge on comparing equilibria between
different model specifications and that rely on ex-ante asymmetries between bidders.
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Supplementary Appendix (For Online
Publication): Proofs
D Proof of Theorem 1 and Auxiliary Lemmas

D.1 Proof of Theorem 1 (Minimum Market Price)

We allow mixed strategies and parameterize bidder i’s mixed strategy by mixing type ξi;
denote by ξ = (ξj)n

j=1 the profile of all bidders’ mixing types. As discussed at the beginning
of Section 4, we hold the common signal s fixed and therefore suppress it from notation.
Thus a bid is a function bi : [0, Q] × Supp ξi → R+. Denote Gi(q; bi) = Pr(qi ≤ q|bi); that is,
Gi(q; bi) is the probability that the quantity agent i receives is weakly lower than q (when
submitting bid bi in the equilibrium considered).

The (essential) minimum market clearing price p and (essential) maximum receivable
quantity qi, conditional on strategy profile (bj)n

j=1, are defined as follows55

p = ess inf
Q,ξ

p
(

Q;
(
bj (·; ξj)

)n

j=1

)
;

qi (ξi) = ess sup
Q,ξ−

qi
(
Q; bi (·; ξi) , b−i (·, ξ−i)

)
;

bi (ξi) = lim
q↗qi(ξi)

bi (q; ξi) .

We proceed in steps.

Lemma 3. Let (bj)n
j=1 be an equilibrium bid profile. If bi(·; ξi) is a best response to (bj)j 6=i

and bi(ξi) < v(qi(ξi)), then qi(ξi) > inf{q : bi(q; ξi) = bi(ξi)};that is, bidder i’s bid is flat in
some left neighborhood of qi(ξi).

Proof. We consider two cases in turn. First, we show that if there is an opponent j whose
bid bj has bounded slope with ξi-positive probability at qj (that is for q < qj(ξj) and close
to qj(ξj), bj(q; ξj) − bj(qj(ξj); ξj) ≤ Mb |q − qj(ξj)| for some Mb ∈ R and mass πj > 0 of ξj),
then bi(ξi) = vi(qi(ξi)). For λ > 0 consider a deviation bλ,

bλ (q) =

bi (q; ξi) if bi (q; ξi) ≥ bi (ξi) + λ,

bi (ξi) + λ otherwise.

55The essential infimum is the highest value a random variable exceeds with probability one,
ess infX f(X) = sup {y : Pr(f(X) ≥ y) = 1}. Similarly, ess supX f(X) = inf {y : Pr(f(X) ≤ y) = 1}.
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Let q̌λ = inf{q : bi(ξi) + λ > bi(q; ξi)} be the lowest quantity at which the deviation bλ

diverges from bi(·; ξi). For q ∈ [q̌λ, qi(ξi)] let δ(q) = [bi +λ]−bi(q; ξi) be the amount by which
the deviation increases the bid. Since the slope of opponent j’s bid is bounded above by
Mb with probability πj, the extra quantity allocated to bidder i when they deviate to bλ is
at least δ(q)/Mb with probability πj where q is the allocation i would have received bidding
bi(·; ξi) . For the deviation to not be profitable, it must be that the increase in payment is
higher than the utility gain from additional quantities that is

∫ qi(ξi)

q̌λ

∫ q

q̌λ
δ (x) dxdGi

(
q; bi (·; ξi)

)
≥ πjµ

∫ q

q̌λ

δ (q)
Mb

dGi
(
q; bi (·; ξi)

)
,

where µ is a constant bound on the marginal utility of additional quantity; we may assume
µ > 0 since marginal values are Lipschitz continuous. Because both sides are zero at λ = 0
and are differentiable in λ, the above inequality implies the following inequality between the
derivatives with respect to λ of both sides:

∫ qi(ξi)

q̌λ

(
q − q̌λ

)
dGi

(
q; bi (·; ξi)

)
≥ πjµ

Mb

(
1 − Gi

(
q̌λ; bi (·; ξi)

))
.

The left-hand side is bounded by

∫ qi(ξi)

q̌λ

(
q − q̌λ

)
dGi

(
q; bi (·; ξi)

)
=
∫ qi(ξi)

q̌λ

(
1 − Gi

(
q; bi (·; ξi)

))
dq ≤

(
qi (ξi) − q̌λ

) (
1 − Gi

(
q̌λ; bi (·; ξi)

))
.

Then the necessary inequality for bλ to not be profitable implies that for λ > 0 sufficiently
small,

qi (ξi) − q̌λ ≥ µπj

Mb

.

In particular, qi(ξi) > limλ↘0 q̌λ and the lemma is proven in the first case.
The remaining case is that, for all opponents j 6= i and all bounds Mb, the event that

the slope of bj(·; ξj) at qj(ξj) is bounded above by Mb has ξj-probability zero. Since the bids
of any bidder j are infinitely steep at qj(ξj) while marginal values are Lipschitz continuous,
it follows that for all opponents j 6= i, bj(ξj) < v(qj(ξj)) with ξj-probability one. By the
previously established case of the lemma, the slope of bi(·; ξ̃i) at qi(ξ̃i) also cannot be bounded
above by any Mb with ξ̃i-positive probability. For bidder j with type ξj, given a quantity
q̌ < qj define a deviation b̌ by

b̌ (q) =

bj (q; ξj) if q < q̌,

bj (q̌; ξj) otherwise.
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Letting δ(q) = bj(q̌; ξj) − bj(q; ξj), the extra expected cost associated with this deviation is
bounded above by

∫ qj(ξj)

q̌

∫ q

q̌
δ (x) dxdGj

(
q; bj (·; ξj)

)
=
∫ qj(ξj)

q̌
δ (q)

(
1 − Gi

(
q; bj (·; ξj)

))
dq.

The extra expected utility associated with this deviation is bounded below by

µ
∫ qj(ξj)

q̌
(q − q̌) dGj

(
q; bj (·; ξj)

)
= µ

∫ qj(ξj)

q̌

(
1 − Gj

(
q; bj (·; ξj)

))
dq,

where µ is a constant bound on the marginal utility of additional quantity (as above).
Since by definition limq̌↗qj(ξj) bj(q̌; ξj) = bj(ξj), we infer that δ(q) is arbitrarily small for q̌

sufficiently close to qj(ξj) . Because µ > 0 is constant, for q̌ near qj(ξj) the upper bound of
the expected cost of the deviation is strictly below the lower bound of the expected benefit
of the deviation, hence the deviation is profitable. This contradicts that (bj)n

j=1 was an
equilibrium bid profile and shows that the second case of the proof cannot arise, thereby
concluding the proof.

Lemma 4. For every bidder i, in equilibrium Pr(qi(ξi) > inf{q : bi(q; ξi) = bi(ξi)) = 0 (that
is flats in the left neighborhood of qi(ξi) have probability 0).

Proof. Note first that there is at most one bidder for whom Pr(qi(ξi) > inf{q : bi(q; ξi) =
bi(ξi)) > 0, otherwise standard tie-breaking logic implies that each of the (multiple) such
bidders has an incentive to slightly increase their bid at the terminal flat. Then by way of
establishing a contradiction, assume that bidder i is the unique bidder for whom Pr(qi(ξi) >

inf{q : bi(q; ξi) = bi(ξi)) > 0. Then for all of bidder i’s opponents j 6= i, Lemma 3 implies that
Pr(bj(ξj) = v(qj(ξj))) = 1; without loss of generality we assume that bj(ξj) = v(qj(ξj)) for all
opponents j 6= i and all types ξj. Because bidder i submits a flat bid with positive probability
while do opponents do not, each opponent j 6= i receives their maximum allocation qj(ξj) with
strictly positive probability. Thus, for each ξj, we have that limq↗qj(ξj) (1 − Gj(q; bj(·; ξj))) >

0 and there is a common lower bound for this limit, which we denote π > 0.
For bidder j with type ξj, and for q̌ < qj(ξj) and ε >0, define a deviation b̌ by

b̌ (q) =

bj (q; ξj) if q < q̌,

bj (ξj) + ε if q ≥ q̌.

For ε > 0, bidder j strictly outbids bidder i’s flat bid. Since ε > 0 may be arbitrarily small,
we omit it from the expressions of cost savings. Ignoring the ε payments, this deviation saves
bidder j payment whenever the allocation (under bj(·; ξj)) would have been above q̌, but it
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also sacrifices gross utility whenever the allocation (under bj(·; ξj)) would have been strictly
between q̌ and qj(ξj). The cost savings is bounded below by π

∫ qj(ξj)
q̌ δ(q)dq, where δ(q) =

bj(q; ξj)−bj(ξj); the gross utility loss is bounded above by limq↗qj(ξj)
∫ q

q̌

∫ y
q̌ µ(x)dxdGj(y; bj(·; ξj)),

where µ(x) = v(x)− bj(ξj). Since marginal values are Lipschitz continuous, µ(x) ≤ (qj(ξj)−
x)Mv, where Mv is the Lipschitz modulus of marginal values. Then a necessary condition
for the deviation to not be profitable is that

∫ qj(ξj)

q̌
δ (q) dqπ ≤ lim

q↗qj(ξj)

∫ q

q̌

∫ y

q̌
µ (x) dxdGj

(
y; bj (·; ξj)

)
= lim

q↗qj(ξj)

∫ q

q̌
µ (y)

(
[1 − π] − Gj

(
y; bj (·; ξj)

))
dy

≤ lim
q↗qj(ξj)

Mv

∫ q

q̌

(
qj (ξj) − y

) (
[1 − π] − Gj

(
y; bj (·; ξj)

))
dy.

Since f(·) is continuous and π > 0, this is only possible if limq↗qj(ξj) δ(q)/(qj(ξj) − q) = 0:
that is, if bidder j’s bid has zero slope at qj(ξj).

Thus each of bidder i’s opponents is submitting an asymptotically flat bid bj(·; ξj) near
qj(ξj), with ξj-probability one. It follows that a slight upward deviation by bidder i by some
λ > 0 will be profitable: the deviation has cost bounded by λQ, and gains proportional to
λ/Mb, where Mb > 0, the Lipschitz upper bound on the slope of other bidders at qj(ξj), may
be taken to be arbitrarily small.

When bidder i’s opponents play strategies (bj)j 6=i let BRi be the set of bidder i’s best
responses. Define the closure of the set of bidder i’s best responses to be

Cl BRi =
{
b : ∀ε > 0, ∀q ≥ 0 ∃b̃ ∈ BRi s.t. Gi (q; b) < 1 =⇒

∣∣∣b (q) − b̃ (q)
∣∣∣ < ε

}
.

To simplify exposition, to any bidding strategy β ∈ Cl BRi we assign ξi such that bi(·; ξi) ≡ β.
For such bi(·; ξi) in the closure we are neither requiring that they are best responses nor that
they are part of the mixing by bidder i. Relatedly, we apply the above definitions of qi(ξi)
and bi(ξi) to such bids bi(·; ξi) from the closure.

Lemma 5. If bi(·; ξi) is in the closure of the set of best responses for bidder i, then bi(ξi) =
v(qi(ξi)).

Proof. Suppose otherwise. Then qi(ξi) < v−1(bi(ξi)). Lemmas 3 and 4 together imply that
with ξ′

i-probability 1, bi(ξ′
i) = v(qi(ξ′

i)) and inf{q : bi(q; ξi) = bi(ξi)} < qi(ξi). Thus bidder
i’s maximum quantity qi drops discontinuously at the limit bi(·; ξi) and the only way this
can happen is if there is some opponent whose bid may be arbitrarily flat. Hence there
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is some bidder j 6= i for whom bj(·; ξj) is in the closure of the set of best responses and
qj(ξj) < v−1(bj(ξj)).

Note that either bi(·; ξi) is not a best response, in which case it is played with probability
zero, or it is a best response and by Lemma 4 it is played with probability zero (since bi(ξi) <

v(qi(ξi)); in either case, bi(·; ξi) is played with probability zero. Then since bi(·; ξi) is in the
closure of the support of bidder i’s best responses, for all ε > 0 and all q ∈ (qi(ξi), v−1(bi(ξi)))
(which is non-empty) there is some type ξ′

i 6= ξi such that bi(·; ξ′
i) ∈ BRi is a best response

to (bj)j 6=i and bi(q; ξ′
i) < bi(ξi) + ε and Gi(q; bi(·; ξ′

i)) < 1; that is, quantity q is obtainable
with positive probability under bid bi(·; ξ′

i), and the bid for this quantity is not too far above
bi(ξi).

For q > qi(ξi), let γ = q − qi(ξi). For type ξ′
i to obtain quantity q under bid bi(·; ξ′

i)
with bi(q; ξ′

i) < bi(ξi) + ε, it must be that some opponent j’s inverse bid at price bi(ξi) + ε

is φj(bi(ξi) + ε; ξj) ≤ v−1(bi(ξi)) − γ/(n − 1). Since γ may take any value between 0 and
qi(ξ′

i)−qi(ξi), and ε > 0 may be arbitrarily small, it follows that when bidder i wins quantity
q the quantity is won against at least one opponent with an arbitrarily flat bid. That is, as
ε > 0 becomes small the residual supply faced by bidder i becomes infinitely elastic.

Finally, since inf{q̃ : bi(q̃; ξ′
i) ≤ bi(ξ′

i)} = qi(ξi) and bi(q̃; ξ′
i) ≤ v(q̃) for all q̃ ∈ (0, qi(ξi)),

for any ε > 0 there is some q > qi(ξ′
i) and type ξ′

i such that bi(q̃; ξ′
i) > bi(q; ξ′

i) for all q̃ < q.
Given such a q and ξ′

i, fix λ > 0, define q̌ = sup{q̃ : bi(q̃; ξ′
i) ≥ bi(q; ξ′

i) + λ} and consider a
deviation bλ given by

bλ (q̃) =

bi (q̃; ξ′
i) if q̃ /∈ [q̌ (λ) , q] ,

bi (q; ξ′
i) + λ if q̃ ∈ [q̌ (λ) , q] .

This deviation has costs equal to

∫ qi(ξ′
i)

q̌(λ)

∫ min{q̃,q}

q̌(λ)
δ (y) dydGi

(
q̃; bi (·; ξ′

i)
)

=
∫ qi(ξ′

i)
q̌(λ)

δ (min {q̃, q})
(
1 − Gi

(
q̃; bi (·; ξ′

i)
))

.

Its benefits are bounded below by

∫ q

q̌(λ)

∫ min{q̃+δ(q̃)/Mb,q}

q̃
v (y) dydGi

(
q̃; bi (·; ξ′

i)
)

.

Because the “inducing the flat” opponent’s bid is arbitrarily flat (for ε small), the benefits
may be bounded below again by
∫ q

q̌(λ)
(q − q̃) µdGi

(
q̃; bi (·; ξ′

i)
)

= (q − q̌ (λ)) µ
(
1 − Gi

(
q̌ (λ) ; bi (·; ξ′

i)
))

−µ
∫ q

q̌(λ)

(
1 − Gi

(
q̃; bi (·; ξ′

i)
))

dq̃.
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For λ sufficiently small this deviation is profitable, hence we obtain a contradiction.

Lemma 6. Let (bi)n
i=1 be a mixed-strategy equilibrium in which each for each bidder i and

each bid bi(·; ξi) in the support of bidder i’s mixed strategy, bi(·; ξi) is a best response to (bj)j 6=i.
Then, for any signal s and profile ξ of mixing types, the market clearing price p

(
Q

R; ξ
)

at
the effective maximum quantity Q

R is equal to the marginal value for per-capita maximum
supply; that is, p

(
Q

R; ξ
)

= v
(

1
n
Q

R
)

.

Proof. Bids will be below values for all relevant quantities, thus we know that p(QR; ξ) ≤
v(QR

/n; ξ) when mixed strategies are supported by best responses. Now, suppose that there
is a type profile ξ such that p(QR; ξ) < v(QR

/n; ξ). By Lemmas 3 and 4, bi(ξi) = v(qi(ξi); ξi)
for all bidders i with ξi-probability 1, hence p(QR; ξ) < v(QR

/n; ξ) only if there is some
bidder i and bid bi(·; ξ′

i) ∈ Cl BRi such that p(QR; ξ) < v(qi(ξi)). This contradicts Lemma 5,
hence it must be that p(QR; ξ) = v(QR

/n) whenever (bi(·; ξi))n
i=1 is a bid profile where each

bi(·; ξi) is a best response to (bj)j 6=i.

Theorem 1 follows from Lemma 6 because in a mixed-strategy equilibrium, the set of bid
functions bi(·; ξi) in the support of bi which are not best responses to (bj)j 6=i has probability
zero.

D.2 Pure strategy equilibrium derivation with symmetric bidder
information

In this section we present the lemmas for our results on existence, uniqueness, and bid rep-
resentation of pure strategy equilibria under symmetric bidder information. The argument
for deterministic supply was given in the main text, and here we focus on random supply.
As in the main text, to simplify notation we write v(q) in lieu of v(q; s) and bi (q) in lieu of
bi(q; s).

Let us fix a pure-strategy candidate equilibrium (bi)n
i=1. Recall that bid functions are

weakly decreasing and (where useful) we may assume that they are right continuous. Given
equilibrium bids the market price (that is, the stop-out price) p (Q) is a function of realized
supply Q. In line with Appendix D.1, denote Gi(q; bi) = Pr(qi ≤ q|bi), and denote the
inverse hazard rate of aggregate supply by H = 1−F

f
.

Our statements in the following results are generally about relevant quantities, such that
Gi(q; bi) < 1. For each bidder we ignore quantities larger than the maximum quantity this
bidder can obtain in equilibrium; for instance, in the following lemmas, all bidders could
submit identical flat bids above their values for units they never obtain. Correspondingly,
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we say that a price level p is relevant if p is strictly higher than p and weakly below the
highest bid.

Lemma 7. For no relevant price level p are there two or more bidders who, in equilibrium,
bid constant value p flat on some non-trivial intervals of quantities.

Proof. The proof resembles similar proofs in other auction contexts. Suppose agent i bids
p on (qiℓ, qir) and bidder j bids p on (qjℓ, qjr) and these quantities are relevant. Since
the support of supply is

[
0, Q

]
, it must be that Gi(qir; bi) > Gi(qiℓ; bi) and Gj(qjr; bj) >

Gj(qℓj; bj). Let q̄i = EQ[qi|p(Q) = b(qir)]; without loss of generality, we may assume that
agent i is such that q̄i < qir. If vi(q̄i) < bi(qir), the agent has a profitable downward deviation.
The agent also has a profitable deviation if vi(q̄i) ≥ bi(qir): she can increase her bid slightly
by λ > 0 on [qiℓ, qir) (enforcing monotonicity constraints as necessary to the left of qiℓ),
keeping her bid below value if necessary.

Lemma 8. Bids are below values: bi(q) ≤ vi(q) for all relevant quantities, and bi(q) < vi(q)
for q < φi(p(Q)).

Proof. Suppose that there exists q with bi(q) > vi(q); because bi is monotonic and vi is
continuous, there must exist a range (qiℓ, qir) of relevant quantities such that bi(q) > vi(q)
for all q ∈ (qiℓ, qir). The agent wins quantities from this range with positive probability, and
hence the agent could profitably deviate to

b̂i (q) = min
{
bi (q) , vi (q)

}
.

Such a deviation never affects how she might be rationed, by the first part of this proof;
hence it is necessarily utility-improving.

Now consider q < φi
(
p
(
Q
))

. If bi(q) = vi(q) then monotonicity of bi and Lipschitz-
continuity of vi imply that for small ε > 0 winning units [q − ε, q] brings per unit profit
lower than Mε, where M is the Lipschitz modulus of v. By lowering the bid for quantities
q′ ∈ [q − ε, q + ε] to b̂i (q′) = min{vi(q) − ε, bi(q′)}, the utility loss from losing the relevant
quantities is at most 2Mε2 (Gi (q + ε; bi) − Gi (q − ε; bi)). Notice that the right-hand proba-
bility difference goes to zero as ε goes to zero. At the same time the cost savings from paying
lower bids at quantities higher than q + ε is (at least) of order ε2. Hence this deviation is
profitable, and it cannot be that bi(q) = vi(q).

Lemma 9. The market clearing price p(Q) is strictly decreasing in supply Q on
[
0, Q

R
]
.
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Proof. We show first that the market clearing price is strictly decreasing in supply for all Q

such that p(Q) > infQ′ p(Q′) = p. We then show that p is strictly decreasing at Q
R as long

as for any bidder i residual supply ∑j 6=i φj(·) has nonzero slope at p. Since Theorem 1 shows
that it is without loss of generality to assume that bi(qi) = v(QR

/n; s), Lemma 8 shows that
bids are below values, and values are Lipschitz continuous, it follows that residual supply
has nonzero slope at p, and therefore the market clearing price is strictly decreasing in Q.

Since bids are weakly decreasing in quantity, the market price is weakly decreasing as
a direct consequence of the market-clearing equation. If price is not weakly decreasing in
quantity at some Q, then a small increase in Q will not only increase the price, but will
weakly decrease the quantity allocated to each agent. This implies that total demand is no
greater than Q, contradicting market clearing.

Lemma 7 is sufficient to imply that the market price must be strictly decreasing for all
Q such that p(Q) > p: at every price level at which at least two bidders pay with positive
probability for some quantity, at most one of the submitted bid functions is flat (that is there
is an interval of quantities at which the bid equals this price). Furthermore, for no price level
p > p that with positive probability a bidder pays for some quantity, we can have exactly
one bidder, i, submitting a flat bid at price p on an interval of relevant quantities. Indeed, in
equilibrium bidder i cannot benefit by slightly reducing the bid on this entire interval; thus
it must be that there is some other agent j whose bid function is right continuous at price
p. If p = 0, all opponents j 6= i have a profitable deviation. If p > 0, we appeal to Lemma
8. Given that i submits a flat bid and the bids of bidder j are strictly below her values for
some non-trivial subset of quantities at which her bid is near p, bidder j can then profit by
slightly raising her bid; this reasoning is similar to that given in the proof of Lemma 7.

We now show that p(·) is strictly decreasing for all Q. Otherwise, following Lemma 7,
there is a bidder i who is submitting a flat bid at p. Denote the left end of this bidder’s flat
by q

i
= inf{q : bi(q) = p}; by assumption, q

i
< qi. (To see that qi > 0 one might also note

that otherwise bidder i would almost surely receive 0 utility ex post, which is not possible in
any equilibrium of pay as bid with symmetric bidders). Let ε, λ > 0 and define a deviation

b̂ελ (q) =


bi (q) if bi (q) > p + λ,

p + λ if bi (q) ≤ p + λ and q ≤ q
i
+ ε,

p otherwise.

That is, b̂ελ is bi, with λ added for length ε at q
i
, and adjusting for the fact that bids must

be monotone decreasing. Note that this deviation increases costs by at most (ε + (q
i

−
φi(p + λ)))λ, with at most probability one. When qi ∈ [q

i
, q

i
+ ε], it increases the quantity
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allocation to (approximately) max{q
i
+ ε, q + λM}, where M is the slope of residual supply

at the minimum price, M =
∣∣∣∑j 6=i φj

p(p)
∣∣∣.56 Let µ ≡ vi(q

i
+ ε) − (p + λ); since bids are below

values and values are strictly decreasing, µ > 0 when ε and λ are sufficiently small. Then
for the deviation to be nonoptimal, it must be that

(
ε +

(
q

i
− φi

(
p + λ

)))
λ ≥ E

[(
max

{
ε, q + λ

M

}
− q

)
µ

∣∣∣∣∣q ∈
[
q

i
, q

i
+ ε

]]

= E
[(

max
{

ε − q,
λ

M

})
µ

∣∣∣∣∣q ∈
[
q

i
, q

i
+ ε

]]
.

Letting Q−i = ∑
j 6=i qj, this can be rewritten as

(
ε +

(
q

i
− φi

(
p + λ

)))
λ
∫ q

i
+ε

q
i

dF
(
q + Q−i

)
≥
∫ q

i
+ε

q
i

max
{

ε + q
i
− q,

λ

M

}
µdF

(
q + Q−i

)
≥
∫ q

i
+ε− λ

M

q
i

µλ

M
dF

(
q + Q−i

)
.

The λ > 0 multipliers cancel; integrating through gives

(
ε +

(
q

i
− φi

(
p + λ

))) (
F
(
q

i
+ ε + Q−i

)
− F

(
q

i
+ Q−i

))
≥ µ

M

(
F

(
q

i
+ ε − λ

M
+ Q−i

)
− F

(
q

i
+ Q−i

))
.

From here the argument is standard. For any ε > 0 there is λ > 0 such that ε − λ/M ≥ ε/2
and q

i
− φi(p + λ) < ε/2. Thus it must be that

3
2

ε
(
F
(
q

i
+ ε + Q−i

)
− F

(
q

i
+ Qi−i

))
≥ µ

M

(
F
(

q
i
+ 1

2
ε − Q−i

)
− F

(
q

i
+ Q−i

))

⇐⇒ F
(
q

i
+ ε + Q−i

)
− F

(
q

i
+ Q−i

)
≥ µ

3M

F
(
q

i
+ 1

2ε − Q−i

)
− F

(
q

i
+ Q−i

)
1
2ε

 .

This must hold for all ε > 0. Because q
i

+ Q−i < Q, supply distribution F is Lebesgue
absolutely continuous near q

i
+ Q−i; taking the limit as ε ↘ 0 gives

0 ≥
µf

(
q

i
+ Q−i

)
3M

.

Since f(·) > 0 at q
i
+ Q−i, this is a contradiction since M is finite (Lemma 12). In this case,

bidder i has a profitable deviation.

56Because we are ultimately letting ε and λ go to zero, this approximation is sufficient. Formally, we may
consider M ′ < M and allow δ to be small enough that the slope of residual supply never falls below M ′.
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Corollary 9. In any pure-strategy equilibrium, bid functions are strictly decreasing.

We define the derivative of Gi with respect to b as follows. For any q and bi, the mapping
t 7→ Gi(q; bi + t) is weakly decreasing in t, and hence differentiable almost everywhere. With
some abuse of notation, whenever it exists we denote the derivative of this mapping with
respect to t by Gi

b(q; bi).

Lemma 10. For each agent i and almost every q we have:

Gi
b

(
q; bi

)
= f

q +
∑
j 6=i

φj
(
bi (q)

)∑
j 6=i

φj
p

(
bi (q)

)
.

Proof. By definition, Gi(q; bi) = Pr(qi ≤ q|bi). From market clearing, this is

Gi
(
q; bi

)
= Pr

Q ≤ q +
∑
j 6=i

φj
(
bi (q)

)
=F

q +
∑
j 6=i

φj
(
bi (q)

) .

Where the demands φj of agents j 6= i are differentiable, we have

Gi
b

(
q; bi

)
= f

q +
∑
j 6=i

φj
(
bi (q)

)∑
j 6=i

φj
p

(
bi (q)

)
.

Since for all j, the demand function φj must be differentiable almost everywhere, the result
follows.

Lemma 11. At points where Gi
b (q; bi) is well-defined, the first-order conditions of the pay-

as-bid auction are given by

−
(
v (q) − bi (q)

)
Gi

b

(
q; bi

)
= 1 − Gi

(
q; bi

)
.

In the case of pure strategies under symmetric bidder information,57 the first-order condition
can be written as

−
(
v (q) − bi (q)

)( d

db
Q
(
bi (q)

)
− φi

p

(
bi (q)

))
= H

(
Q
(
bi (q)

))
,

57The definition of the derivative of bidder i’s distribution of supply, Gi
b, obtained in Lemma 10, assumes

pure strategies under symmetric bidder information. The first order condition derived here is invariant to
the source of randomness in the bidder’s allocation, but the statement in terms of aggregate demand holds
only for pure strategies under symmetric bidder information.
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where Q (p) is the inverse of p (Q).

Proof. The agent’s maximization problem is given by

max
b

∫ Q

0

∫ q

0
v (x) − b (x) dxdGi (q; b) .

Integrating by parts, we have

max
b

−
[(

1 − Gi (q; b)
) ∫ q

0
v (x) − b (x) dx

]
|Qq=0 +

∫ Q

0
(v (q) − b (q))

(
1 − Gi (q; b)

)
dq.

In the first square bracket term, both multiplicands are bounded for q ∈ [0, Q], hence the
fact that 1 − Gi(Q; b) = 0 for all b and

∫ 0
0 v(x) − b(x)dx = 0 for all b allows us to restate the

agent’s optimization problem as

max
b

∫ Q

0
(v (q) − b (q))

(
1 − Gi (q; b)

)
dq,

where the integral still equals bidder’s expected utility from bidding b. The calculus of
variations gives us the necessary condition

−
(
1 − Gi

(
q; bi

))
−
(
v (q) − bi (q)

)
Gi

b

(
q; bi

)
= 0.

This holds at almost all points at which Gi
b is well-defined. Rearrangement yields the first

expression for the first-order condition.
To derive the second expression, let us substitute into the above formula for Gi and Gi

b

from the Lemma 10. We obtain

−
(
v (q) − bi (q)

)
f

q +
∑
j 6=i

φj
(
bi (q)

)∑
j 6=i

φj
p

(
bi (q)

) = 1 − F

q +
∑
j 6=i

φj
(
bi (q)

) ,

Now, Q (p) is well-defined since we have shown that p is strictly monotone. By Corollary 9
bids are strictly monotone in quantities and hence q +∑

j 6=i φj (bi (q)) = Q (bi (q)), and

−
(
v (q) − bi (q)

)∑
j 6=i

φj
p

(
bi (q)

) = H
(
Q
(
bi (q)

))
.

Since ∑j 6=i φj
p (bi (q)) = d

db
Q (bi (q)) − φi

p (bi (q)), the second expression for the first order
condition obtains.

Lemma 12. Each bidder’s equilibrium inverse bid is Lipschitz continuous at all prices p at
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which the bidder receives a quantity in [0, qi(Q)).

Proof. Consider an equilibrium bid profile (bi)n
i=1, and let qi(Q) be the resulting allocation

of bidder i given supply Q. By way of contradiction, assume that bidder i’s inverse bid φi is
not Lipschitz continuous at some price p at which the bidder receives a quantity q = φi (p)
in [0, qi(Q)). Then p = bi(q) and Gi(q; bi) < 1. Let Qmin ∈

[
0, Q

)
be a supply at which

q = qi(Qmin); in particular, Qmin = q +∑
j 6=i φj(bi(q)).

The failure of Lipschitz continuity implies that either for any K̃ there are arbitrarily
small ε > 0 such that φi (p − ε) − φi (p) > K̃ε, or for any K̃ there are arbitrarily small
ε > 0 such that φi (p) − φi (p + ε) > K̃ε. We provide the argument for the former case; the
analysis of the latter cases is analogous.58 In this case, for any K > 0, there are arbitrarily
small ε > 0 such that

bi(q) − bi(q + ε) < Kε. (5)

We proceed in five steps. First, we show that bidder i wins an arbitrarily large fraction
of residual market quantity just above Q. Second, there exist non-trivial intervals on which
bidder i wins an arbitrarily large fraction of the residual market quantity. Third, the bid
of bidder i is nearly flat on non-trivial intervals just above Q. Fourth, each opponent j’s
bid must be steep near qj(Qmin). Fifth and finally, the last two claims allow us to conclude
that bidder i’s inverse bid must be discontinuous at p, contradicting Corollary 9 in which we
showed that equilibrium bids are strictly decreasing.

Claim 1. There is a subsequence of aggregate quantities converging to Qmin on which
i receives all additional supply beyond Qmin; that is, for any M < 1 and ε̄ > 0, there is
Q ∈ (Qmin, Qmin + ε̄) such that qi(Q) > q + (Q − Qmin)M .

Proof. Take any ε > 0 and consider the deviation bε that “kicks out” the bid function at
q for length ε,

bε (q′) =

bi (q′) if q′ /∈ [q, q + ε] ,

bi (q) = p if q′ ∈ [q, q + ε] .

This deviation increases payment by at most
∫ q+ε

q bi (q) − bi (x) dx whenever the realized
quantity q′ > q, which occurs with probability 1 − Gi(q; bi) ≡ P . It also increases the
allocation: as in equilibrium the opponents bids are strictly decreasing (by Corollary 9),

58In the former case we maintain the assumption that bi is right continuous. In the latter case, we consider
b̂i, the left-continuous modification of bi. Because bids are monotone on a compact domain, b̂i and bi agree
almost everywhere and yield the same utility for bidder i, we infer that any utility-improving deviation from
b̂i is a utility-improving deviation from bi, and vice-versa. As, in the latter case, φi fails Lipschitz continuity
to the right of p, we conclude that bi is left continuous at q, so bi and b̂i agree at this point and φ̂i (the
inverse of b̂i) also fails Lipschitz continuity to the right of p. We may then derive the same contradiction as
in the former case.
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whenever the allocation of i would have been in the interval (q, q+ε), the allocation increases
to q +min{ε, Q−Qmin}. The resulting gain in expected utility attributable to the allocation
increase is ∫ Qmax

Qmin

∫ q+min{ε,Q−Qmin}
qi(Q)

v (x) − bi (q) dxdF (Q) ,

where Qmax = [q + ε] + ∑
j 6=i φj(bi(q + ε)). Notice that Qmax > Qmin + ε. As (bj)n

j=1 is an
equilibrium, the costs of the deviation weakly outweigh the benefits,

[∫ q+ε

q
bi (q) − bi (x) dx

]
P ≥

∫ Qmax

Qmin

∫ q+min{ε,Q−Qmin}
qi(Q)

v (x) − bi (q) dxdF (Q) .

The left-hand side is bounded from above by [bi(q) − bi(q + ε)]εP , and the right-hand side
is bounded from below by

∫ Qmax

Qmin

∫ q+min{ε,Q−Qmin}
qi(Q)

v (x) − bi (q) dxdF (Q)

≥
∫ Qmax

Qmin

(
q + min

{
ε, Q − Qmin

}
− qi (Q)

) [
v
(
q + min

{
ε, Q − Qmin

})
− bi (q)

]
dF (Q)

≥
[
v
(
q + min

{
ε, Qmax − Qmin

})
− bi (q)

]
f
∫ Qmax

Qmin

(
q + min

{
ε, Q − Qmin

}
− qi (Q)

)
dQ

where f > 0 is a lower bound on f(·) on [Qmin, Qmax]; such a bound exists because f is
continuous and f(·) > 0 on [Qmin, Qmax] for small ε (as then Qmax < Q).

A necessary condition for the alternate bid bε to not improve bidder i’s utility is

[
bi (q) − bi (q + ε)

]
εP

≥
[
v
(
q + min

{
ε, Qmax − Qmin

})
− bi (q)

]
f
∫ Qmax

Qmin

(
q + min

{
ε, Q − Qmin

}
− qi (Q)

)
dQ

=
[
v (q + ε) − bi (q)

]
f
∫ Qmax

Qmin

(
q + min

{
ε, Q − Qmin

}
− qi (Q)

)
dQ

Let C > 0 be such that C ≤ [v(q + ε) − bi(q)]f/P ; we then require

bi (q) − bi (q + ε) ≥ C

ε

∫ Qmax

Qmin

(
q + min

{
ε, Q − Qmin

}
− qi (Q)

)
dQ. (6)

Consider any M ∈ (0, 1] such that

qi(Q) ≤ q + (Q − Qmin)M

for Q ∈ (Qmin, Qmax); such an M trivially exists because this inequality holds for M = 1.
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Note that q + ε = qi (Qmax) ≤ q + (Qmax − Qmin) M implies that

Qmax ≥ Qmin + 1
M

ε.

The bounds on Qmax and qi(Q) imply that

∫ Qmax

Qmin

(
q + min

(
ε, Q − Qmin

)
− qi (Q)

)
dQ

=
∫ Qmin+ε

Qmin

(
q − qi (Q) + Q − Qmin

)
dQ +

∫ Qmax

Qmin+ε

(
q − qi (Q) + ε

)
dQ

≥
∫ Qmin+ε

Qmin

(
−(Q − Qmin)M + Q − Qmin

)
dQ

=
∫ Qmin+ε

Qmin

(
(1 − M) (Q − Qmin)

)
dQ = (1 − M) ε2

2
.

Plugging this into the necessary condition above we transform it to

bi (q) − bi (q + ε) ≥ C

ε
(1 − M) ε2

2
= C (1 − M)

2
ε

for all sufficiently small ϵ > 0 and any M ∈ (0, 1] such that qi(Q) ≤ q + (Q − Qmin)M for
Q ∈ (Qmin, Qmin + ε).

The above bound and equation 5 jointly imply that, for any M < 1 and ε̄ > 0, there
is Q ∈ (Qmin, Qmin + ε̄) such that qi(Q) > q + (Q − Qmin)M . This proves the claim: there
are supply realizations arbitrarily close to Qmin for which agent i wins an arbitrarily large
proportion of aggregate quantity above Qmin. QED

Claim 2. For any M < 1 and any ε > 0 there is an aggregate quantity Q′ and a quantity
q′ = qi(Q′) won by bidder i such that for all Q̃′ ∈ (Q′, Q′ + ε),

qi
(
Q̃′
)

≥ q′ +
(
Q̃′ − Q′

)
M.

Furthermore, Q′ can be taken to be arbitrarily close to Qmin.
Proof. Because qi(·) is weakly increasing and q + (Q − Qmin)M is continuous in Q, by

applying Claim 1 to sufficiently larger M < 1, we obtain intervals (Q′, Q′ + ε) such that for
for all Q̃′ ∈ (Q′, Q′ + ε),

qi
(
Q̃′
)

≥ q +
(
Q̃′ − Qmin

)
M

as claimed. QED
Claim 3. There is a constant C > 0 such that for any M < 1 and for any Q′ from Claim

2 sufficiently close to Qmin and for any sufficiently small δ > 0, the bids near q′ = qi (Q′)
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satisfy
bi (q′) − bi (q′ + δ) ≤ C (1 − M) δ.

Proof. Consider M , ε, Q′, and q′ from Claim 2. For δ ∈ (0, ε) consider a deviation

bδ (q̃′) =

bi (q′ + δ) if q̃′ ∈ [q′, q′ + δ] ,

bi (q̃′) otherwise.

This deviation saves payment
∫ q′+δ

q′ bi (x)−bi (q′ + δ) dx with probability at least 1−Gi(q′+δ),
and, for δ sufficiently small, we can bound this probability from below by some constant
P > 0. In equilibrium the saved payment is weakly lower than the associated gross utility loss
from winning fewer units; the latter is bounded above by v(0) (1 − M) δ(Gi(q′ + δ) − Gi(q′)),
where (1 − M) δ is the bound on quantity loss implied by the bound in Claim 2. Thus

P
∫ q′+δ

q′
bi (x) − bi (q′ + δ) dx ≤ v (0) (1 − M)

(
Gi (q′ + δ) − Gi (q′)

)
δ.

As bi is weakly decreasing, we can bound the left-hand side integral from below by 1
2δ
(
bi
(
q′ + 1

2δ
)

− bi (q′ + δ)
)
,

hence obtaining

bi
(

q′ + 1
2

δ
)

− bi (q′ + δ) ≤ 2v (0) (1 − M)
P

(
Gi (q′ + δ) − Gi (q′)

)
.

Because the density of supply is continuous and bounded away from 0 on relevant supply
levels and because bidder i receives at least fraction M of any small increase in aggregate
supply above Q′, there is some real f > 0 such that Gi(q′ + δ) − Gi(q′) < fδ for sufficiently
small δ. In effect,

bi
(

q′ + 1
2

δ
)

− bi (q′ + δ) ≤ 2v (0) f

P
(1 − M) δ.

Because this inequality holds for all δ arbitrarily small, we may telescope it to obtain

lim
k→∞

bi
(

q′ + 1
2k

δ
)

− bi (q′ + δ) ≤

 ∑
k=1,2,...

1
2k

 2v (0) f

P
(1 − M) δ,

where the right-hand summation converges to 2. The claim follows from the right-continuity
of bi.59 QED

59Recall that we consider the failure of Lipschitz continuity in which for any K̃ there are arbitrarily small
ε > 0 such that φi (p − ε) − φi (p) > K̃ε. The argument for the failure of Lipschitz continuity in which for
any K̃ there are arbitrarily small ε > 0 such that φi (p)−φi (p + ε) > K̃ε needs an adjustment at this point:
as mentioned above, in the latter argument we replace bi with its left-continuous modification b̂i. We then
bound limk→∞ b̂i (q′ − δ) − b̂i

(
q′ − 1

2k δ
)

from above, and the proof proceeds with minimal further changes.
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Claim 4. The bids of j 6= i are steep near qj(Qmin). That is, there is a constant C > 0
such that for any M < 1, any sufficiently small ε, and any Q′ from Claim 2 sufficiently close
to Qmin, the bids near qj = qj (Q′) satisfy

bj (qj) − bj (qj + ε) ≥
[

M

1 − M

]
Cε.

Proof. Let q′ = qi (Q′), M , and δ be as in Claim 3 above and qj = qj (Q′) = φj (bi (q′))
and note that when Q′ is close to Qmin then q′ is close to q = qi(Qmin) and qj is close to
qj(Qmin). Let ε > 0 and, for bidder j 6= i, consider the deviation bε given by

bε (q) =

bi (q′) if q ∈ [qj, qj + ε] ,

bj (q) otherwise.

The costs and benefits of this deviation are analogous to those calculated in the proof of
Claim 1 for bidder i. As the deviation is not profitable in equilibrium, we infer that

[∫ qj+ε

qj

bj (qj) − bj (x) dx

]
P ≥

∫ Qmax

Qmin

∫ qnew(Q)

qj(Q)
v (x) dxdF (Q)

where qnew (Q) is the allocation of j after the deviation. From Lemma 8 we know that
v(qj) > bj(qj); since dF (·) ≥ f , this inequality implies

∫ qj+ε

qj

bj (qj) − bj (x) dx ≥ Cj

∫ Qmax

Qmin
qnew (Q) − qj (Q) dQ.

for some constant Cj > 0 that depends on neither qj nor ε. The left-hand side can be
bounded above, ∫ qj+ε

qj

bj (qj) − bj (x) dx ≤
(
bj (qj) − bj (qj + ε)

)
ε.

By Claim 2 and market clearing, we know that qj(Q) ≤ qj + (1 − M)(Q − Qmin) and hence
Qmax−Qmin ≥ ε/(1−M). As in the analysis of Claim 1, qnew (Q) = min{qj +ε, qj +Q−Qmin}.
Since qnew (Qmax) − qj(Qmax) = 0, we have

Cj

∫ Qmax

Qmin
qnew (Q)−qj (Q) dQ ≥ Cj

∫ Q̃

Qmin

(
Q − Qmin

)
MdQ+Cj

∫ Q⊥

Q̃
ε−(1 − M)

(
Q − Qmin

)
dQ,

where Q⊥ is such that ε − (1 − M̂)(Q⊥ − Qmin) = 0 and Q̃ = Qmin + ε; we can truncate the
integration at Q⊥ because deviation bε weakly increases the quantity allocated to bidder j and
hence qnew (Q) ≥ qj(Q) for all Q. The right-hand side integrals are

∫ Q̃
Qmin (Q − Qmin) MdQ =
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1
2Mε2 and

∫ Q⊥

Q̃
ε − (1 − M)

(
Q − Qmin

)
dQ = 1

2
[
ε − (1 − M)

(
Q̃ − Qmin

)] [
Q⊥ − Qmin

]
= 1

2
Mε

[
ε

1 − M

]
,

where the last equation follows from the just-above definitions of Q̃ and Q⊥. Putting this
all together, we have

Cj

∫ Qmax

Qmin
qnew (Q) − qj (Q) dQ ≥ 1

2
CjMε2 + 1

2
CjMε

[
ε

1 − M

]
= 1

2
CjM

[2 − M

1 − M

]
ε2.

Thus a necessary condition for the deviation not to be profitable is

bj (qj) − bj (qj + ε) ≥ 1
2

CjM
[2 − M

1 − M

]
ε.

Because the right-hand side is positive and 2 − M > 1, the claim obtains for C = 1
2Cj. QED

Knowing that the bids of opponents j 6= i are steep when the bid of bidder i is flat—and
in particular establishing bounds for steepness and flatness in terms of common M—permits
a tighter bound on the quantity lost by a downward deviation for bidder i. Retain qi, M ,
and δ as above, let ε > 0 and consider a deviation bε,

bε (q) =

bi (qi) − ε if bi (q) ∈ [bi (qi) − ε, bi (qi)] ,

bi (q) otherwise.

The cost savings of this deviation are bounded below by P
∫ φi(bi(qi)−ε)

qi
bi(q) − bε(q)dq, where

P is as in Claim 1. This bound is approximated from below by

P
∫ φi(bi(qi)−ε)

qi

bi (q) − bε (q) dq ≥ 1
2

(
φi
(

p − 1
2

ε
)

− φi (p)
)

Pε.

The gross utility sacrificed is bounded above by

µf
∫ Q̃

Qmin
Q − QmindQ + µf

∫ Qmax

Q̃

2 (n − 1) (1 − M)
CM (2 − M)

εdQ,

where C is as in Claim 3. The former term is the quantity lost that results in allocation
q′ = qi (but would have resulted in allocation qi(Q) > qi); the lost quantity in this interval
is bounded above by Q − Qmin. The latter term is the quantity lost that results in allocation
q′ > qi; the quantity lost in this interval is bounded above by the inverse slope of opponent
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bids, established above. Noting that 2 − M ≥ 1, the gross utility sacrificed is bounded by
[(

Q̃ − Qmin
)2

+
(1 − M

M

) (
Qmax − Q̃

)
(n − 1) 2C−1ε

]
µf

≤
[[(1 − M

M

)
(n − 1) 2C−1

]2
ε2 +

(1 − M

M

) (
Qmax − Q̃

)
(n − 1) 2C−1ε

]
µf.

Note that Qmax − Q̃ ≤ (φi(bi(qi) − ε) − qi)/M . Substituting through, a necessary inequality
is

1
2

(
φi
(

p − 1
2

ε
)

− φi (p)
)

P

≤
[(1 − M

M

)
(n − 1) 2C−1ε + 1

M

(
φi (p − ε) − φi (p)

)] [(1 − M

M

)
(n − 1) 2C−1

]
µf.

To economize notation we let K̂ = 1 − M and consolidate constants into C1 and C2 (in
which we rely on M being close to 1 and thus bound M−1 above by 2), thus transforming
the above into

φi
(

p − 1
2

ε
)

− φi (p) ≤
[
C1K̂ε +

(
φi (p − ε) − φi (p)

)
C2
]

K̂.

This gives (
φi (p − ε) − φi (p)

)
C2K̂ ≥ φi

(
p − 1

2
ε
)

− φi (p) − C1K̂
2ε.

Because the same inequality must hold for all ε′ ∈ (0, ε), telescoping this inequality implies
that for any k,

(
φi (p − ε) − φi (p)

)
C2K̂ ≥

[
1

C2K̂

]k (
φi
(

p − 1
2k+1 ε

)
− φi (p)

)
− 1

2k

1 −
(
2C2K̂

)k+1

1 − 2C2K̂

C1K̂
2ε.

Since φi is not Lipschitz continuous at p, for any K > 0 and any k ∈ N we can find ε′ > 0
such that ε′ ≤ ε/2k and φi (p − ε′) − φi (p) > Kε′. For such K and ε′, let k̄ = max{k : ε′ <

ε/2k}; by construction, ε/2 < 2k̄ε′ ≤ ε. Substituting into the previous inequality gives

(
φi
(
p − 2kε′

)
− φi (p)

)
C2K̂ ≥

[
1

C2K̂

]k̄

Kε′ −

1 −
(
2C2K̂

)k̄+1

1 − 2C2K̂

C1K̂
2ε′

≥
[

1
C2K̂

]k̄

Kε′ − 2C1K̂
2ε′ =

K − 2
(
C2K̂

)k̄
C1K̂

2(
C2K̂

)k̄

 ε′.
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The middle inequality follows from the fact that K̂ may be arbitrarily close to 0, thus
[1 − (2C2K̂)k̄+1]/[1 − 2C2K̂] ≤ 2 without loss of generality. Similarly, the right-hand term in
the numerator is vanishingly small in comparison to the left-hand term (which is independent
of k̄), hence

φi
(
p − 2k̄ε′

)
− φi (p) ≥ 1

2

 K(
C2K̂

)k̄+1

 ε′.

Recalling that ε/2 < 2k̄ε′ ≤ ε, we substitute into the previous inequality to obtain

φi (p − ε) − φi (p) ≥ φi
(
p − 2k̄ε′

)
− φi (p) ≥ Kε(

2C2K̂
)k̄+1 .

Since C2 is constant and independent of ε, and K̂ is arbitrarily close to zero, the fact that k̄

may be arbitrarily large implies that φi (p − ε) − φi (p) > K ′ε for all K ′ ∈ R, contradicting
the fact that φi is bounded. It follows that φi must be Lipschitz continuous at p.

Lemma 13. Equilibrium inverse bids are continuously differentiable at all prices p ∈ (p, p].

Proof. Lemma 12 gives that equilibrium inverse bids are Lipschitz continuous. Note that Gi
b

is continuous at a point if the equilibrium first-order conditions are satisfied at this point;
let Z be the set of quantities at which the equilibrium first-order conditions are satisfied.
Because the first-order condition is satisfied almost everywhere (Lemma 11), it follows that
Z has full measure and Gi

b is continuous almost everywhere (Lemma 10). Expressed in terms
of inverse bid functions, the first order condition is

(
v
(
φi (b)

)
− b

)
Gi

b

(
φi (b) ; b

)
= 1 − Gi

(
φi (b) ; b

)
= 1 − F

 n∑
j=1

φj (b)

 ,

and, because the marginal value v and all inverse bids φi are continuous, it follows that
there exists a continuous function Ĝi

b that equals Gi
b on Z. Because each φi is monotone it

is differentiable on a set Z ′ with full measure. Thus on Z ∩ Z ′, we have

φi
p (p) = 1

n − 1
∑
j 6=i

Gj
b

(∑
k

φk (p)
)

− n − 2
n − 1

Gi
b

(∑
k

φk (p)
)

.

It follows that there is a function φ̂i
p, continuous on all of (p, p], such that φi

p equals φ̂i
p on

Z ∩ Z ′, φi
p = φ̂i

p|Z∩Z′ .
Since φi is Lipschitz continuous it is the integral of φi

p, and since φi
p = φ̂i

p|Z∩Z′ , it is
the case that φi(p) = −

∫ p
p φ̂i

p (x) dx. Since φ̂i
p is continuous, the fundamental theorem of
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calculus implies φi
p = φ̂i

p, and the result is shown.

Corollary 10. In any equilibrium of the pay-as-bid auction, for all bidders i and for all
q ∈ [0, Q

R
/n),

− (v (q) − b (q)) Gi
b

(
q; bi

)
= 1 − Gi

(
q; bi

)
.

Lemma 14. Equilibrium bidding strategies must be symmetric in all pure strategy equilibria:
bi = b for all i.

Proof. The proof proceeds by establishing an ordering of asymmetric bid functions. We use
this ordering to show that equilibrium is symmetric in the n = 2 bidder case, and the result
from the n = 2 bidder case provides tools for the general analysis. Intuitively, the argument
is that agents would prefer to receive a positive quantity rather than zero quantity; because,
as we prove, receiving zero quantities is a necessary feature of asymmetric putative equilibria,
the asymmetric bids are not best responses. Our proof relies on Lemma 12, which establishes
Lipschitz continuity of equilibrium inverse bids; the fundamental theorem of calculus applies,
and we have that for any internal price p, φi(p) =

∫ p
p φi

p(x)dx.
Note that for any agent i, ∑j 6=i φj

p(p) = Qp(p) − φi
p(p). Then we can write the agent’s

first-order condition as

bi (q) = v (q) +
(

1 − F (Q (p))
f (Q (p))

)(
1

Qp (p) − φi
p (p)

)
.

Now suppose that two agents i, j have bid functions which differ on a set of positive measure;
let q be such that bi(q) > bj(q). Then there is a price p such that φi(p) > φj(p), and
v(φi(p)) < v(φj(p)). For any such price, substituting into the agents’ first-order conditions
gives

(
1 − F (Q (p))

f (Q (p))

)(
1

Qp (p) − φi
p (p)

)
>

(
1 − F (Q (p))

f (Q (p))

)(
1

Qp (p) − φj
p (p)

)
.

As 1 − F (Q (p)) 6= 0 (because the inequality is strict), rearrangement gives

φj
p (p) < φi

p (p) .

Thus, whenever φi(p) > φj(p), we have φi
p(p) > φj

p(p). Recalling from Theorem 1 that bids
must equal values at q = Q/n, this implies that if there is any p such that φi(p) > φj(p),
then φi > φj.

Now consider the implications for the n = 2 bidder case, and let j 6= i. Assume that
there is p with φi(p) > φj(p) > 0. Then there is some p̌ such that φj(p̌) = 0 and φi(p̌) > 0.
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Basic auction logic dictates that bidder i can never outbid the maximum bid of bidder j

(i.e., it must be that bi(0) = bj(0)) thus it must be that bidder i’s first-order condition does
not apply for initial units, and she is submitting a flat bid. That is, bi(q)|q≤φi(p̌) = p̌. Now
let ε, λ > 0, and define a deviation b̂ελ for bidder j,

b̂ελ (q) =

bj (0) + λ if q ≤ ε,

bj (q) otherwise.

Then for all q ∈ (0, ε], b̂ελ(q) > bi(q), and when the realized quantity is Q ∈ (0, ε] bidder j

wins the entire supply. To bound the additional utility, we see that for small ε > 0 bidder j

gains at least ∫ ε

0

(
v (x) − bj (x)

)
dx
(
F
(
φi (p̌)

)
− F (ε)

)
.

There is an extra cost paid as well; to bound this cost we will assume that it is paid with
probability 1, and this cost is (bj(0) + λ)ε −

∫ ε
0 bj(x)dx. The deviation b̂ελ is profitable if the

ratio of benefits to costs is greater than 1, hence we look at

lim
λ↘0,ε↘0

∫ ε
0 (v (x) − bj (x)) dx (F (φi (p̌)) − F (ε))

(bj (0) + λ) ε −
∫ ε

0 bj (x) dx

= lim
ε↘0

∫ ε
0 (v (x) − bj (x)) dx (F (φi (p̌)) − F (ε))

bj (0) ε −
∫ ε

0 bj (x) dx
.

The numerator and denominator both go to zero as ε ↘ 0; application of l’Hôpital’s rule
gives

= lim
ε↘0

v (0) − bj (0)
0

= +∞.

Then either the deviation to b̂ελ is profitable for bidder j (when |bj
q(0)| < ∞), or bidder i

may (essentially) costlessly reduce the initial flat of her bid function (when |bj
q(0)| = ∞).60

Now consider the case of n ≥ 3 agents. By the previous arguments we know that for
small quantities submitted bid functions can be ranked (as can their inverses), and that at
least two agents submit the highest possible bid function. Thus, we focus on two selected

60Implicit here is that v(0) > bj(0) = bi(0), which follows from Lemma 8 but in this particular case is
trivial: since bidder i is bidding flat to φi(p̌), if v(0) = bi(0) she is obtaining zero surplus on a positive measure
of initial units. The bidder would rather cut their bid and lose all of these units with some probability, saving
payment for higher units and gaining expected gross utility.
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inverse bid functions, defined pointwise,

φH (p) ≡ max
{
φi (p)

}
,

φL (p) ≡ max
{
φi (p) : φi (p) < φH (p)

}
.

For any asymmetric equilibrium, φL is well-defined because the analysis above shows that,
unless the inverse bid functions φi, φj are the same for all p, then they are different for all p.
Let mH ≡ #{i : φi = φH} and mL = #{i : φi = φL} be the numbers of agents submitting
each bid. By the above analysis mH ≥ 2 and mL ≥ 1; additionally, mH + mL ≤ n. As
before, there is p̌ such that φL(p̌) = 0, φH(p̌) > 0, and φL(p) > 0 for all p < p̌. Corollary 9
shows that φH must be continuous and Lemma 13 implies that φH

p is continuous, hence the
equilibrium first order conditions imply

lim
p↘p̌

(mH − 1) φH
p (p) = lim

p↗p̌

[
(mH − 1) φH

p (p) + mLφL
p (p)

]
.

We now show that if limp↗p̌ φL
p (p) = 0, then a bidder bidding bL has a profitable deviation.

Let ε > 0 be small, and consider a deviation b̂L from bL such that

b̂L (q) =

bL (ε) if q ≤ ε,

bL (q) otherwise.

The deviation b̂L yields a reduction in quantity bounded above by ε, at a margin bounded
above by v(0). Because φL

p < φH
p ≤ 0, the probability of reduced quantity is bounded above

by (mH + mL)fε, where f is an upper bound for f(·) in a neighborhood of mHφH(bL(0)).
The expected gross utility loss from the deviation b̂L is therefore bounded above by (mH +
mL)fv(0)ε2. On the other hand, the deviation b̂L saves the bidder payment for all quantity
realizations q > ε. This payment is saved with probability bounded below by some P > 0,
and, because φL(p̌) = 0 and limp↗p̌ φL

p (p) = 0, for any C > 0 there is sufficiently small ε

such that the amount saved bounded from below by ε2/C. The deviation is profitable if

(mH + mL) fv (0) ε2 <
ε2

C
.

After factoring out the common ε2 term, the left-hand side is constant while the right-hand
side can be arbitrarily large for small C. It follows that b̂L is a profitable deviation for some
ε.
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Then it cannot be the case that limp↗p̌ φL
p (p) = 0. It follows that

lim
p↘p̌

φH
p (p) = lim

p↗p̌
φH

p (p) + mL

mH − 1
φL

p (p) < 0.

Intuitively, the bid function bH is steeper below φH(p̌) than above, and there is a kink at
this point. This implies a discontinuity in a bidder L’s first-order condition near q = 0. For
p close to but less than p̌, the first-order condition is

−
(
v
(
φL (p)

)
− p

)
f (Q (p))

(
mHφH

p (p) + (mL − 1) φL
p (p)

)
− (1 − F (Q (p))) = 0,

=⇒ −
(
v
(
φL (p)

)
− p

)
f (Q (p))

(
(mH − 1) φH

p (p) + mLφL
p (p)

)
− (1 − F (Q (p))) > 0.

Letting p ↗ p̌, we know that the term [(mH −1)φH
p (p)+mLφL

p (p)] approaches limp↘p̌(mH −
1)φH

p (p), proportional to the marginal probability gained by a slight increase in bid from bL

near p̌ to b̃L > p̌. Thus, the L bidder’s second-order conditions are not satisfied near q = 0,
and this is not an equilibrium.

E Proofs for Section 4 (Pay-as-Bid Equilibrium)
For our proofs of Theorems 2, 3, and 4, we assume that the reserve price is R = 0. In
this case, the maximum realizable quantity is Q

R = Q. In Supplementary Appendix E.4 we
detail how these proofs must change to account for binding reserve prices.

E.1 Proof of Theorem 2 (Uniqueness)

Proof. From Lemma 11 and market clearing, we know that for all bidders

(p (Q) − v (q)) Gi
b

(
q; bi

)
= 1 − Gi

(
q; bi

)
.

Since Lemma 14 tells us that agents’ strategies are symmetric, Lemma 10 allows us to write
this as (

p (Q) − v
( 1

n
Q
))

(n − 1) φp (p (Q)) = H (Q) ,

where H(Q) = (1 − F (Q))/f(Q). From market clearing, we know that p(Q) = b(Q/n);
hence pQ(Q) = bq(Q/n)/n. Additionally, standard rules of inverse functions give φp(p(Q)) =
1/bq(Q/n) almost everywhere. Thus we have

(
p (Q) − v

( 1
n

Q
))

n − 1
n

= H (Q) pQ (Q) .
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Now suppose that there are two solutions, p and p̂. From Theorem 1 we know that p(Q) =
p̂(Q). Suppose that there is a Q such that p̂(Q) > p(Q); taking Q near the supremum of
Q for which this strict inequality obtains we conclude that p̂Q(Q) < pQ(Q).61 But then we
have

p̂ (Q) > p (Q) = v
( 1

n
Q
)

+
(

n

n − 1

)
H (Q) pQ (Q) > v

( 1
n

Q
)

+
(

n

n − 1

)
H (Q) p̂Q (Q) .

The presumed right-continuity of bids and Lipschitz continuity of φ (from Lemma 12) allow
us to conclude that if p solves the first-order conditions, p̂ cannot.62

E.2 Proof of Theorem 3 (Bid Representation)

From the first order condition established in the proof of uniqueness, the equilibrium price
satisfies

pQ = pH̃ − v̂H̃,

where v̂(x) = v(x/n), and H̃(x) = [1/H(x)][(n − 1)/n]. The solution to this equation has
general form

p (Q) = Ce
∫ Q

0 H̃(x)dx − e
∫ Q

0 H̃(x)dx
∫ Q

0
e−
∫ x

0 H̃(y)dyH̃ (x) v̂ (x) dx,

parametrized by C ∈ R. Define ρ = n−1
n

∈ [1
2 , 1). We can see that H̃ = −ρ d

dQ
ln(1 − F ).

Thus we have

e
∫ t

0 H̃(x)dx = e−ρ
∫ t

0
d

dx
ln(1−F (x))dx = e−ρ(ln(1−F (t))−ln 1) = (1 − F (t))−ρ .

Substituting and canceling, we have for Q < Q:

p (Q) =
(

C − ρ
∫ Q

0
f (x) (1 − F (x))ρ−1 v̂ (x) dx

)
(1 − F (Q))−ρ . (7)

61The inequality inversion here from usual derivative-based approaches reflects the fact that we are “work-
ing backward” from Q, while any solution must be weakly decreasing: thus a small reduction in Q should
yield p̂(Q) = p(Q) ≤ p < p̂.

62The first-order condition for bids ensures that the slope of φ is strictly negative; then since φ is Lips-
chitz continuous (by Lemma 12) any equilibrium inverse bid is the integral of its own derivative, and any
equilibrium market price function is the integral of its own derivative.
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Since 1 − F (Q) = 0, this implies that C = ρ
∫Q

0 f (x) (1 − F (x))ρ−1 v̂ (x) dx. The market
clearing price is then given by

p (Q) = ρ
∫ Q

Q
f (x) (1 − F (x))ρ−1 v̂ (x) dx (1 − F (Q))−ρ .

Since d/dy[F Q,n(y)] = ρf(y)(1−F (y))ρ−1(1−F (Q))−ρ, our formula for market price obtains,
and since we have proven earlier that the equilibrium bids are symmetric, the formula for
bids obtains as well.

E.3 Proofs of Theorem 4 (Existence) and Corollary 1

Proof of Theorem 4. The proof of equilibrium existence under deterministic supply is given
in the main text, therefore we assume in this proof that supply has full support, Supp Q =
[0, Q]. Let us this fix a bidder i whose incentives we will analyze, and assume that other
bidders j 6= i follow the strategies bj = b of Theorem 3 when bidding on quantities q ≤ Q

R
/n,

and that they bid bj
(
Q

R
/n
)

= v
(
Q

R
/n
)

for quantities q ∈
[
Q

R
/n, Q

R
/ (n − 1)

]
if Q

R = Q

(non-binding reserve price), and that they bid v (q) for quantities q ∈
[
Q

R
/n, Q

R
/ (n − 1)

]
if Q

R
< Q (binding reserve price). The resulting bid function is valid because, by definition,

b satisfies bj
(
Q

R
/n
)

= v
(
Q

R
/n
)
. Note that in equilibrium there is no incentive for bidder i

to lower or raise their bid on any quantity q ≥ Q
R

/n and we only need to check that bidder
i finds it optimal to submit bids prescribed by Theorem 3 for quantities q ∈ [0, Q

R
/n).

Because the bid b derived in Theorem 3 is strictly decreasing on [0, Q
R

/n] and the auction
is discriminatory, a bid b̃ such that there is a q with b̃(q) > b(0) is weakly dominated by a
bid which is never above b(0). Second, since the maximum of reserve price and opponents’
bid b is never below v(QR

/n) on [0, Q
R

/(n − 1)], a bid b̃(q) < v(QR
/n) is never awarded

quantity q. These two facts in turn imply that the bidder’s optimal bid for any quantity is
b̃(q) ∈ [v(QR

/n), b(0)]. Finally, since bid b is continuous and, by Theorem 1, is such that
b(QR

/n) = v(QR
/n), it is the case that for any utility-maximizing bid b̃ and any quantity q,

there is a quantity q̂ ∈ [0, Q
R

/n] such that b̃(q) = b(q̂). Because b is strictly decreasing on
q̂ ∈ [0, Q

R
/n], the preceding equality defines a unique mapping q̃ from q to q̂. As shown in

the proof of Lemma 11, bidder i’s expected utility from submitting bid b̃ is63

E
[
ui
(
b̃
)]

=
∫ Q

0

(
v (q) − b̃ (q)

) (
1 − F

(
q + (n − 1) φ ◦ b̃ (q)

))
dq,

63When b̃ (q) = b (q) then φ ◦ b̃ (q) = q. Because 1 − F (nq) = 0 for q > Q
n , we can write the utility as

E
[
ui (b)

]
=
∫ Q/n

0 (v (q) − b (q)) (1 − F (nq)) dq. Because b (q) = v (q) for q ∈
[

Q
R

n , Q
n

]
, we can simplify the

utility further to E
[
ui (b)

]
=
∫ Q

R
/n

0 (v (q) − b (q)) (1 − F (nq)) dq.
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and it follows that we may write the expected utility from bidding b ◦ q̃ as

E
[
ui (b ◦ q̃)

]
=
∫ Q

0
(v (q) − b ◦ q̃ (q)) (1 − F (q + (n − 1) q̃ (q))) dq =

∫ Q

0
U (q̃ (q) ; q) dq.

In particular, instead of bidder i selecting a bid for quantity q, we may consider bidder i as
selecting a bid such that their opponents each receive quantity q̃(q).

From U(q̂(q); q) ≤ max
q̂∈[0,Q

R
/n] U(q̂; q), we then infer that

E
[
ui (q̃)

]
≤
∫ Q

0
max

q̂∈
[

0, 1
n

Q
R
]U (q̃; q) dq.

In particular, any bid which maximizes U(·; q) pointwise for almost every quantity q will
maximize the bidder’s expected utility. As we showed in Appendix D.2, the first derivative
of U(·; q) is the pointwise first-order condition used to derive the bid b, and is equal to zero
at q̃ = q. Then by the assumption of this theorem, U(·; q) is maximized at q̃ = q for almost
every q, and thus b̂ = b is a best response to bidder i’s opponents submitting the symmetric
bid bj = b.

Proof of Corollary 1. Denote by φn the equilibrium inverse bid when there are n bidders.
Note that for every q ∈ [0, Q

R
/n) and p ∈ (v(QR

/n), v(q)), the expression

(v (q) − p) (1 − F (q + (n − 1) φn (p)))

is differentiable in p, nonnegative, and has limit 0 as p → v(q). To establish the condition in
Theorem 4, it is thus sufficient to show that, for almost all relevant q, the derivative of this
expression with respect to p is zero at most once.

The derivative is

− (1 − F (q + (n − 1) φn (p))) − (v (q) − p) (n − 1) f (q + (n − 1) φn (p)) φn
p (p) . (8)

From the equilibrium derivation in Theorem 3, this derivative is zero at p = bn(q). We now
show that when n is large this derivative is negative for p > bn(q) and positive for p < bn(q).

Our first step is to show that, under the assumptions of the Corollary the slope of the
inverse bid, φn

p , is bounded and bounded away from zero. Because φn
p (p) = 1/bn

q (φn(p)), it
is sufficient to show that the slope of the equilibrium bid, bn

q , is bounded and bounded away
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from zero. Integrating our bid representation (1) by parts gives

bn (q) = v (q) +
∫ Q

R

n

q
vq (x) (1 − F nq,n (x)) dx.

The right-hand expression can be rewritten in terms of per capita supply, giving

bn (q) = v (q) +
∫ Q

R,per capita

q
vq (x)

(
1 − F per capita (x)
1 − F per capita (q)

)n−1
n

dx.

Then the derivative of the equilibrium bid function is

bn
q (q) = n − 1

n

∫ Q
R,per capita

q
vq (x)

(
1 − F per capita (x)
1 − F per capita (q)

)n−1
n f per capita (q)

1 − F per capita (q)
dx.

We first show that bn
q is bounded away from zero. Recalling that bn

q ≤ 0, that v ≤ vq(x) ≤
v < 0 by assumption, and that 0 < f per capita < f per capita < f

per capita by assumption, we have

bn
q (q) ≤ n − 1

n

(
1

1 − F per capita (q)

)n−1
n

+1

vf per capita
∫ Q

R,per capita

q
(1 − F per capita (x))

n−1
n dx

≤ n − 1
n

(
1

1 − F per capita (q)

)n−1
n

+1

vf per capita
∫ Q

R,per capita

q
(1 − F per capita (x))

n−1
n

f per capita (x)
f

per capita dx

≤ n − 1
n

(
1

n−1
n

+ 1

)
vf per capita

f
per capita = n − 1

2n − 1

[
vf per capita

f
per capita

]
≤ 1

3

[
vf per capita

f
per capita

]
< 0.

To see that bn
q is bounded below follows a similar path,

bn
q (q) ≥

 f
per capita(

Q
R,per capita − q

)
f per capita

∫ Q
R,per capita

q
vdx

=

 f
per capita(

Q
per capita − q

)
f per capita

(QR,per capita − q
)

v = f
per capita

v

f per capita .

Then bn
q , and hence φn

p , is bounded and bounded away from zero. Note that these bounds
are independent of the number of bidders n.

Because the density f per capita and its derivative f per capita
q are bounded, and because φn

p is

76



bounded uniformly for all n, we can write (8) as

−
(

1 − F per capita

(
q + (n − 1) φn (p)

n

))
− n − 1

n
(v (q) − p) f per capita

(
q + (n − 1) φn (p)

n

)
φn (p)

= − (1 − F per capita (φn (p))) − n − 1
n

(v (q) − p) f per capita (φn (p)) φn
p (p)

−
(

F per capita (φn (p)) − F per capita

(
q + (n − 1) φn (p)

n

))

− n − 1
n

(v (q) − p)
(

f per capita

(
q + (n − 1) φn (p)

n

)
− f per capita (φn (p))

)
φn

p (p)

= − (1 − F per capita (φn (p))) − n − 1
n

(v (q) − p) f per capita (φn (p)) φn
p (p) − 1

n
(q − φn (p)) Ĉ1,

where

1
n

(q − φn (p)) Ĉ1 = −
(

F per capita (φn (p)) − F per capita

(
q + (n − 1) φn (p)

n

))

− n − 1
n

(v (q) − p)
(

f per capita

(
q + (n − 1) φn (p)

n

)
− f per capita (φn (p))

)
φn

p (p)

= 1
n

(q − φn (p)) cF per capita − 1
n

[
n − 1

n
(v (q) − p) φn

p (p)
]

(q − φn (p)) cfper capita

= 1
n

(q − φn (p)) cF per capita − 1
n

(q − φn (p)) cδcfper capita

= 1
n

(q − φn (p))
(
cF per capita − cδcfper capita

)
.

The constants cF per capita and cfper capita exist and are bounded, independent of p, q, and n,
because f per capita and f per capita

q are bounded. The constant cδ is bounded, independent of p,
q, and n, because v(q) − p and φn

p (p) are bounded, independent of n. It follows that the
constant Ĉ1 exists and has a uniform bound which is independent of p, q, and n. From our
equilibrium bid representation, we may then write (8) as

n − 1
n

(v (φn (p)) − p) φn
p (p) − n − 1

n
(v (q) − p) φn

p (p) − 1
n

(q − φn (p)) Ĉ1

f per capita (φn (p))
.

Since f per capita and φn
p are bounded away from zero, (8) has the same sign as

−
[
(v (φn (p)) − v (q)) − 1

n
(q − φn (p)) Ĉ2

]
,

where Ĉ2 = Ĉ1/φn
p (p) is bounded because φn

p is bounded away from 0 uniformly for all n.
Further, because the derivative of v is bounded away from zero, there is γ < 0 such that the

77



derivative we study has the same sign as

−
[
(φn (p) − q) γ − 1

n
(q − φn (p)) Ĉ2

]
= (φn (p) − q)

(
|γ| − 1

n
Ĉ2

)
.

Although the specific values of γ and Ĉ2 depend on p, q, and n, they are nonetheless
uniformly bounded. Since γ is bounded away from zero, it follows that there is n sufficiently
large so that (8) is negative when p > bn(q) and positive when p < bn(q), completing the
proof.

E.4 Modifying the Proofs to Allow for Reserve Prices

The bound on market price established in Theorem 1 implies that a binding reserve price is
equivalent to creating an atom in the supply distribution at the quantity at which marginal
value equals the reserve price. In order to extend the previous proofs to the setting that
allows reserve prices (as the results are stated in the main text), we therefore need to extend
them to distributions in which there might be an atom at the upper bound of support Q.64

All our results remain true, and the proofs go through without much change except for the
end of the proof of Theorem 3, where more care is needed.

The proof of Theorem 3 goes through until the claim that 1 − F (Q) = 0; in the presence
of an atom at Q this claim is no longer valid. We thus proceed as follows. We multiply both
sides of equation (7) by (1 − F (Q))ρ and conclude that

p (Q) (1 − F (Q))ρ = C − ρ
∫ Q

0
f (x) (1 − F (x))ρ−1 v

( 1
n

x
)

dx.

Now, let
⇀

F (Q) ≡ limQ′↗Q F (Q′). Because the market price and the right-hand integral
are continuous as Q ↗ Q, we have

p
(
Q
)(

1 −
⇀

F
(
Q
))

= C − ρ
∫ Q

0
f (x) (1 − F (x))ρ−1 v

( 1
n

x
)

dx.

The parameter C is determined by this equation. The market price function is then

p (Q) =

1 −
⇀

F
(
Q
)

1 − F (Q)


ρ

p
(
Q
)

+ ρ
∫ Q

Q
f (x) (1 − F (x))ρ−1 v

( 1
n

x
)

dx (1 − F (Q))−ρ . (9)

64Starting with a given supply distribution F with support [0, Q] and moving all probability from [QR
, Q]

to an atom at Q
R results in a new distribution F̃ with support [0, Q

R], with an atom at Q
R. All results

apply to this new distribution, thus it is without loss of generality to assume that the mass point is at Q.
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Recall from Theorem 1 that p(Q) = v(Q/n). Extending our notation to the auxiliary
distribution F Q,n, we also have

F Q,n(Q) −
⇀

F
Q,n

(Q) = 1 −
⇀

F
Q,n

(Q) =

1 −
⇀

F
(
Q
)

1 − F (Q)


ρ

.

Since d/dy[F Q,n(y)] = ρf(y)(1 − F (y))ρ−1(1 − F (Q))−ρ for all Q, y < Q, we have

p (Q) =
(

F Q,n(Q) −
⇀

F
Q,n (

Q
))

v
( 1

n
Q
)

+
∫ Q

Q
v
( 1

n
x
)

d

dy

[
F Q,n (y)

]
y=x

dx

=
∫ Q

Q
v
( 1

n
x
)

dF Q,n (x) ,

proving our formula for equilibrium stop-out price in the presence of an atom at Q. Noting
that Q

R
< Q implies an atom in the realized allocation distribution at Q

R, equation 2 in
Theorem 3 follows. Since equilibrium is symmetric, equation 1 is an immediate corollary. □

F Proofs for Section 5 (Designing Pay-as-Bid Auctions):
Proof of Theorem 5

Theorem 5 shows that, when the designer is constrained to a reserve price R and a distribu-
tion over supply F , the optimal mechanism is deterministic. This result is distinct, and does
not follow, from the analysis in Appendix A, which shows that (under regularity conditions
on demand) a seller who can implement stochastic elastic supply prefers to implement a de-
terministic elastic supply curve. In general, fixed supply Q⋆ and reserve R⋆ is insufficiently
elastic to obtain monopoly rents from all bidder signals s, and a seller who can implement
an elastic supply curve will strictly prefer to do so.

Proof of Theorem 5. Consider a pure-strategy equilibrium in a pay-as-bid auction with re-
serve price R and supply distribution F . In Section 4 we proved that the equilibrium is
essentially unique and symmetric. Furthermore, in equilibrium, for any relevant quantity
q, each bidder’s bid equals the resulting market-clearing price when quantity Q = nq is
sold; we denote this market clearing price p(Q; R, s), suppressing in the notation the price’s
dependence on F as it is constant. We denote the resulting equilibrium revenue by π(Q; R, s).

The seller maximizes the expected revenue Es

[
πF
]

= Es[
∫Q

0 π (Q; R, s) dF (Q)], where πF

denotes the seller’s profits when bidders bid against distribution of supply F . When bidders’
values are low relative to the reserve price, and the realized quantity is high, the reserve
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price is binding and the bidders receive only a partial allocation. Because the auction is
discriminatory and b(Q/n) = p(Q), expected revenue may be written as

Es

[
πF
]

= Es

[∫ Q

0

∫ QR(y,s)

0
p (x; R, s) dxdF (y)

]
. (10)

Integrating by parts gives

Es

[
πF
]

=Es

{[
− (1 − F (y))

∫ QR(y,s)

0
p (x; R, s) dx

] ∣∣∣∣∣
Q

y=0

+
∫ Q

0
(1 − F (y)) p

(
QR (y, s) ; s

)
dQR (y, s)

}
,

where the first addend is zero. Recognizing that Q is continuous in y and that QR
y (y, s) = 1

for v(y/n; s) > R and QR
y (y, s) = 0 for v(y/n; s) < R, we can thus express expected revenue

as

Es

[
πF
]

= Es

∫ Q
R(s)

0
(1 − F (y)) p

(
QR (y, s) ; s

)
dy

 .

Applying our Theorem 3 gives

Es

[
πF
]

= Es

∫ Q
R(s)

0
(1 − F (y))

(1 − F y,n
(
Q

R (s)
))

v
( 1

n
Q

R (s) ; s
)

+
∫ Q

R(s)

y
v
( 1

n
x; s

)
dF y,n (x)

 dy

 ,

(11)
where F y,n (x) = 1 −

(
1−F (x)
1−F (y)

)n−1
n is the c.d.f. of the weighting distribution from the theo-

rem.65

Applying integration by parts to the inner integral and substituting in for F y,n gives

Es

[
πF
]

= Es

∫ Q
R(s)

0
(1 − F (y)) v

( 1
n

y; s
)

+ (1 − F (y))
1
n

∫ Q
R(s)

y

1
n

vq

( 1
n

x; s
)

(1 − F (x))
n−1

n dxdy

 .

(12)
65The outer integral in equation (11) is bounded to [0, Q∗(s)], thus y ≤ Q∗(s) for all y and F y,n(Q∗(s))

is well-defined. The left-hand addend in the integral results from the fact that, when Q∗(s) < Q—that is,
when signal-s bidders have low values for the maximum quantity, v̂(Q; s) < R—there is a mass point in the
resulting distribution of realized aggregate allocation at Q∗(s); this same expression is seen in equation (9)
in Appendix (E.4).

80



We may change the order of integration of the right-hand double integral to obtain

∫ Q
R(s)

0
(1 − F (y))

1
n

∫ Q
R(s)

y

1
n

vq

( 1
n

x; s
)

(1 − F (x))
n−1

n dxdy

=
∫ Q

R(s)

0

∫ x

0
(1 − F (y))

1
n dy

1
n

vq

( 1
n

x; s
)

(1 − F (x))
n−1

n dx

≤
∫ Q

R(s)

0

1
n

xvq

( 1
n

x; s
)

(1 − F (x)) dx,

where the inequality follows from the facts that vq ≤ 0, and 1 − F (y) ≥ 1 − F (x) for y ≤ x.
Substituting y for x and plugging this bound in the above expression for expected profits,
we have

Es

[
πF
]

≤ Es

∫ Q
R(s)

0
(1 − F (y))

(
v
( 1

n
y; s

)
+ 1

n
yvq

( 1
n

y; s
))

dy

 .

Notice that xvq(x/n; s)/n+v(x/n; s) = πδx
q (x; s), where πδx(x; s) = xv(x/n; s) is the revenue

from selling quantity x at price v(x/n; s). Integrating by parts gives

Es

[
πF
]

≤ Es

∫ Q
R(s)

0
πδx

q (x; s) (1 − F (x)) dx


= Es

π
δ

Q
R(s)

(
Q

R (s) ; s
) (

1 − F
(
Q

R (s)
))

+
∫ Q

R(s)

0
πδx (x; s) dF (x)


= Es

[∫ Q

0
πδ

QR(x,s)
(
QR (x, s) ; s

)
dF (x)

]
. (13)

Thus,

Es

[
πF
]

≤
∫ Q

0
Es

[
πδ

QR(x;s)
(
QR (x, s) ; s

)]
dF (x) .

Since there are no cross-terms in this integral, the right-hand side is maximized at a degen-
erate distribution which maximizes Es[πδ

QR(x;s)(QR(x, s); s)]. This is exactly the problem of
choosing optimal feasible deterministic supply given the reserve price R. It follows that ex-
pected revenue is weakly dominated by expected revenue with optimal deterministic supply,
hence optimal supply is deterministic.
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G Robust Selection and the Proofs for Section 6 (The
Auction Design Game)

G.1 Robust and Semi-truthful Equilibria in Uniform Price

In the uniform-price auction, equilibrium bidding strategies are unique when the support
of supply is sufficiently large as established by Klemperer and Meyer [1989]; for their ar-
gument to apply in our setting, it is sufficient that the support of supply contains [0, Q],
where Q ≥ sups nv−1 (R; s). Because the bids in Klemperer and Meyer’s equilibrium remain
best responses even after the bidders learn the realization of supply, these bids remain in
equilibrium for all supply distributions (assuming the reserve price is kept the same). This
observation allows us to re-interpret Klemperer and Meyer’s uniqueness result as a selection
of an equilibrium that is robust to bidders’ beliefs about the distribution of supply.

In the uniform-price auction, bids for quantities which are never marginal never affect
utility, and are relevant only in ensuring that there is no profitable deviation from a particular
best response bid curve. For example, when supply is deterministic bidders can coordinate
on collusive-seeming equilibria, in which the market-clearing price is low, and high bids for
nonmarginal units ensure it is not profitable for any bidder to increase their allocation by
increasing their bid. The seller has the ability to almost-costlessly eliminate these equilibria
by adding a small amount of randomness to aggregate supply, ensuring that all quantities
remain potentially marginal. Robust bids are therefore focal in our equilibrium analysis of
the uniform-price design game: bidders cannot credibly commit to bidding below robust
bids, because the seller can introduce a small amount of randomness to induce (at worst) a
robust bidding equilibrium.

Lemma 15. [Symmetric Equilibrium in Uniform Price] For all signals s and any price
p(s) ∈ [R, v(QR(s)/n; s)], there is a symmetric equilibrium of the uniform-price auction in
which all bidders bid

b (q; s) = v (q; s) +
∫ 1

n
Q

R(s)

q

(
q

x

)n−1
vq (x; s) dx −

 q
1
n
Q

R (s)

n−1 (
v
( 1

n
Q

R (s) ; s
)

− p (s)
)

.

Proof. We follow the approach of Klemperer and Meyer [1989]: they show that there is
continuum of asymmetric equilibria in uniform price, and we leverage their analysis to show
that all prices given above can be supported in symmetric equilibria. First note that the
above bid function b is decreasing, b (q) ≤ v (q) at each quantity q ∈ [0, Q

R(s)/n], and at
the maximum quantity Q

R(s)/n bid b
(
Q

R(s)/n
)

∈ [R, v(QR(s)/n; s)]; in particular the bids
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on quantities q ∈ [0, Q
R(s)/n] are above the reserve price. In the uniform-price auction, the

first-order conditions on the inverse bid φ are

(v (Q − (n − 1) φ (p) ; s) − p) +
(

Q − (n − 1) φ (p)
n − 1

)
1

φp (p)
= 0, ∀Q. (14)

Woodward [2021] shows that the symmetric solution to (14) is

b (q; s) = v (q; s) +
∫ 1

n
Q

R(s)

q
exp

(
− (n − 1)

∫ x

q

dz

z

)
vq (x; s) dx − C exp

− (n − 1)
∫ 1

n
Q

R(s)

q

dx

x


= v (q; s) +

∫ 1
n

Q
R(s)

q

(
q

x

)n−1
vq (x; s) dx −

 q
1
n
Q

R (s)

n−1

C,

where C is a parameter that can be set so that b(QR(s)/n; s) = p(s). Thus to show that
b(·; s) is an equilibrium bidding function, it is sufficient to show that the left-hand side of
(14) is negative for p′ > p and positive for p′ < p; equivalently, since the equation is solved
at φ(p) = Q/n, for the latter point to hold it is sufficient to show that the above expression
is negative for Q > nφ(p′) and positive for Q < nφ(p′). We thus check

sign
[
(v (Q − (n − 1) φ (p′) ; s) − p′) + Q − (n − 1) φ (p′)

(n − 1) φp (p′)

]

= sign


(

(v (Q − (n − 1) φ (p′) ; s) − p′) + Q − (n − 1) φ (p′)
(n − 1) φp (p′)

)
−
(

(v (nφ (p′) − (n − 1) φ (p′) ; s) − p′) + nφ (p′) − (n − 1) φ (p′)
(n − 1) φp (p′)

)
︸ ︷︷ ︸

=0


= sign

[
(v (Q − (n − 1) φ (p′; s)) − v (nφ (p′) − (n − 1) φ (p′) ; s)) + Q − nφ (p′)

(n − 1) φp (p′)

]
.

Recalling that φp < 0, when Q < nφ(p′) the leading and trailing expressions are positive,
and when Q > nφ(p′) the leading and trailing expressions are negative, as desired.

The existence of semi-truthful and robust equilibria is an immediate consequence of
Lemma 15. Proposition 1 gives the explicit form of robust equilibrium bids.

Proposition 1. [Bids Robust to Uncertainty] The unique uniform-price equilibrium bid
profile that is robust to uncertainty is given by

b (q; s) =
(

q

v−1 (R; s)

)n−1

R + (n − 1)
∫ v−1(R;s)

q

(
q

x

)n−1 v (x; s)
x

dx, (15)
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or, equivalently,
b (q; s) = v (q; s) +

∫ v−1(R;s)

q

(
q

x

)n−1
vq (x; s) dx.

Proof. With unbounded supply, expression (15) gives the unique solution to the equilibrium
first-order conditions in the uniform-price auction (Lemma 15). Then (bi)n

i=1 is the unique
robust uniform-price bid profile.

We henceforth refer to the above uniform-price bid function as the robust uniform-price
bid. The robust uniform-price bid is continuous, differentiable, strictly below marginal values
for all q ∈ (0, v−1(R; s)), and equal to marginal values for q ∈ {0, v−1(R; s)}. No matter
which auction format is employed, optimal supply Q⋆ is strictly positive. In the pay-as-
bid design game the optimal deterministic quantity must be binding for some bidder types,
Q⋆PAB < sups v−1(R; s), provided the value space is rich. Since robust uniform-price bids are
strictly below value on (0, Q⋆PAB/n] for all types s such that Q⋆PAB < v−1 (R; s), the pay-
as-bid auction generates strictly greater revenue than the uniform-price auction with robust
bidding. Because, in the auction design game, bidders can select an equilibrium on the
basis of the supply and reserve chosen by the auctioneer, revenue dominance of deterministic
pay-as-bid is sufficient to prove Lemma 1.

Proof of Lemma 1. We first show that, holding bids fixed, optimal supply is deterministic
in the uniform-price auction. Given bid b and distribution of per-capita supply F µ, the
expected revenue obtained from a given bidder in the uniform-price auction is

Es

(1 − F µ
(
Q

R (s)
))

RQ
R (s) +

∫ Q
R(s)

0
qb (q; s) dF µ (q)


= Es

∫ Q
R(s)

0
(b (q; s) + qbq (q; s)) (1 − F µ (q)) dq


=
∫ Q

0
Es

[
b (q; s) + qbq (q; s)

∣∣∣QR (s) > q
]

(1 − F µ (q)) dq =
∫ Q

0
J (q; s) (1 − F µ (q)) dq.

It follows that the optimal distribution F µ is deterministic, and is equal to 0 below some
threshold and 1 above it.

Following Proposition 1, robust uniform-price bids can be represented as

b (q; s) = v (q; s) +
∫ Q̂(s)

q

(
q

x

)n−1
vq (x; s) dx.

Because vq < 0, these bids are strictly below values at all q < Q̂(s). And because optimal
supply (holding bids fixed) is deterministic, optimal revenue under robust bids is strictly
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below optimal pay-as-bid revenue: otherwise there is a reserve R and deterministic quantity
Q that yield expected uniform-price revenue equal to expected pay-as-bid revenue, contra-
dicting the richness of the value space.

Since the maximum expected revenue obtained under robust bids is strictly below the
optimal expected revenue in the pay-as-bid auction, it is sufficient to show that when ε > 0
is small and random supply is supported on [Q⋆PAB − ε, Q⋆PAB + ε] and the reserve price is
R ∈ [R⋆PAB − ε, R⋆PAB + ε], equilibrium uniform-price revenue under semi-truthful bids is
close to optimal pay-as-bid revenue. A lower bound on this revenue is

Es

[∫ Q⋆PAB+ε

Q⋆PAB−ε
Q

R (Q; s) v
( 1

n
Q

R (Q; s) ; s
)

dF (Q)
]

≥ Es

[
Q

R
(
Q

⋆PAB − ε; s
)

v
( 1

n
Q

R
(
Q

⋆PAB + ε; s
)

; s
)]

.

Because Q
R is continuous in Q and R, and because R → R⋆PAB as ε ↘ 0, the right-hand

side converges to

Es

[
Q

R⋆PAB (
Q⋆PAB; s

)
v
( 1

n
Q

R⋆PAB (
Q⋆PAB; s

)
; s
)]

.

This is exactly optimal pay-as-bid revenue. Then suppose that bidders play semi-truthful
bids when the auctioneer selects reserve R and distribution F , and play robust bids otherwise.
Provided ε > 0 is sufficiently small, reserve R and distribution F will yield more revenue to
the auctioneer than any other selection. The result follows.

Proposition 2. [Strict Dominance of Pay-as-Bid Revenue] When the value space is
rich, the pay-as-bid design game generates strictly greater revenue than the unique robust
equilibrium of the uniform-price design game.

Note that Proposition 2 depends on the richness of the value space only because, when the
value space is not rich, a single quantity and reserve is optimal for all bidder signals s; when
the auction’s supply is given by this optimal supply and its reserve by this optimal reserve,
there is a unique bidding equilibrium in both the pay-as-bid and uniform-price auctions, and
equilibrium revenue will not depend on the auction format selected.

Proposition 3. [Range of Prices in Uniform Price] If p⋆(s) is the market-clearing price
at supply Q

R in an equilibrium of the uniform-price auction with supply distribution F , then
for all signals s, p⋆(s) ∈ [R, v(QR

/n; s)]. Furthermore, for any supply distribution, any
signal s, and any p⋆(s) ∈ [R, v(QR

/n; s)], there is an equilibrium of the uniform-price design
game with market-clearing price at supply Q

R equal to p⋆(s).

Proof. The second claim follows from Lemma 15. To prove the first claim note that p⋆(s) ≥ R

by definition. If p⋆(s) > v(QR
/n; s) ≥ R, then with positive probability some bidder i is
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allocated a positive mass of qi such that v(qi; s) < p⋆(s). If this bidder bids b′ = v(·; s)
instead, she is awarded all units she values above p⋆(s) at a price no greater than p⋆(s).
This deviation is profitable as she keeps all positive-margin units, drops the negative-margin
units, and does not increase her payment.

G.2 Deterministic Revenue Bound in Uniform Price

Lemma 16. [Deterministic Dominance in Uniform Price] For any equilibrium of the
uniform-price design game ((R, F ), b), there is a deterministic-supply equilibrium ((R⋆, F ⋆), b⋆(·; s, R⋆, F ⋆))
that generates weakly higher seller revenue and has the same on-path bids.

Proof. With symmetrically-informed bidders, equilibrium bids in the uniform-price auction
are optimal for every realization of supply, a point first made by Klemperer and Meyer [1989].
For a given bidder, every realization of supply determines a residual supply curve correspond-
ing to the demands of the other bidders, and the given bidder’s bid effectively serves to select
the price-quantity pair from this residual supply curve; this choice does not depend on choices
at other realizations of supply as long as the resulting bid curve is downward-sloping. In
effect, two supply distributions with the same support admit the same set of equilibria, and
if one supply distribution has a smaller support than another, its set of equilibrium bids is
a weak superset of the other. This implies that the revenue-maximizing equilibrium with
deterministic supply is also revenue-maximizing among all possible equilibria.

G.3 Proof of Theorem 7

In the proof below we decorate market outcome functions with superscripts denoting the
relevant mechanism, where helpful. For example, p⋆UP is the market-clearing price in the
uniform-price auction and p⋆PAB is the market-clearing price in the pay-as-bid auction.

Proof of Theorem 7. As discussed in Theorem 5 and Lemma 16, we may restrict attention to
optimal deterministic supply distributions in both the pay-as-bid and uniform-price auctions.
Revenue maximization may then be expressed as a per-agent quantity q⋆ and market price
p⋆; for signals s such that v(q⋆; s) ≥ p⋆ it is without loss to assume that the total allocation is
nq⋆—there is sufficient demand for the total quantity at the reserve price—while for signals
s such that v(q⋆; s) < p⋆ it is clear that some total quantity nq′ < nq⋆ will be allocated. The
seller’s expected revenue is then an expectation over bidder signals,

Es [π] = Es [nq (q⋆, p⋆; s) · p (q⋆, p⋆; s)] .
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The quantity allocated under the uniform-price auction equals the quantity allocated under
the pay-as-bid auction, qUP(q⋆, p⋆; s) = qPAB(q⋆, p⋆; s), whenever v(·; s) is strictly decreasing
at this quantity, or when v(·; s) > p⋆ at this quantity.66 Since we have assumed that v(·; s) is
strictly decreasing, the quantity allocation depends only on q⋆ and p⋆ and not on the mech-
anism employed. Additionally, it is the case that p⋆UP(q⋆, p⋆; s) = p⋆PAB(q⋆, p⋆; s) whenever
v(q⋆; s) < p⋆. Let S be the set of such s,

S = {s′ : v (q⋆; s) < p⋆} .

Then we have

Es [π] = p⋆ Pr (s ∈ S)Es [nq (q⋆, p⋆; s)|s ∈ S] + nq⋆ Pr (s /∈ S)Es [p (q⋆, p⋆; s)|s /∈ S] .

The left-hand term is independent of the mechanism employed, while the right-hand term
depends on the mechanism only via the expected market-clearing price. In the pay-as-
bid auction, we have seen that p(q⋆, p⋆; s) = v(q⋆; s) for all s /∈ S, while in the uniform-
price auction any price p ∈ [p⋆, v(q⋆; s)] is supportable in equilibrium. It follows that the
pay-as-bid auction weakly revenue dominates the uniform-price auction, and generally will
strictly do so. That the seller-optimal equilibrium of the uniform-price auction is revenue-
equivalent to the unique equilibrium of the pay-as-bid auction arises from the selection of
p⋆UP(q⋆, p⋆; s) = v(q⋆; s) for all s /∈ S.

H Proofs for Appendix A (Elastic Supply)

H.1 Proof of Theorem 8 (Uniqueness with Elastic Supply)

Proof. The analysis from the proof of Theorem 1 allows us to conclude that on the maximum
unit each bidder might receive, the bidder pays her marginal value. Letting Q̂(s) be the
aggregate quantity awarded in equilibrium under supply curve Q⋆(s), it cannot be that
p⋆(Q̂(s); s) > v̂(Q̂(s); s), since bids on relevant quantities are weakly below values. If, instead,
p⋆(Q̂(s); s) < v̂(Q̂(s); s), the arguments from the proof of Theorem 1 apply; indeed, they are
strengthened by the fact that a small increase in bid increases allocation not only by beating
opponent bids, but also by increasing the market price and moving up the supply curve.

Because each bidder bids b⋆(Q̂(s)/n; s) = v(Q̂(s)/n; s) in any equilibrium, each bidder’s
66In the latter case there is excess demand, so all units will be allocated. In the former case all units are

allocated at the reserve price; there is a possible difference in allocation when bidders’ marginal values are
flat over an interval of quantities at the reserve price, since bidders are indifferent between receiving and not
receiving these quantities.
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allocation is Q̂(s)/n. This allocation is deterministic, conditional on the bidder-common
signal s. Then any bid curve b such that b(q) > v(Q̂(s)/n; s) for some q > 0 is wasteful:
it does not affect the resulting allocation, and

∫ Q̂(s)/n
0 b(q)dq >

∫ Q̂(s)/n
0 b⋆(q; s)dq. It follows

that b⋆(q) = v(Q̂(s)/n; s) for all q ≤ Q̂(s)/n, and equilibrium bids are unique for all relevant
quantities.

H.2 Proof of Lemma 2

As we consider the special case of the seller who knows the bidders’ values, we simplify
notation and suppress the signal while writing value and bid functions.

H.2.1 Preliminary Definitions

Recall that we defined the supply-reserve distribution K (Q; R) in Appendix A. For simplic-
ity, we carry out the analysis under the assumption that supply-reserve distribution K is
continuously differentiable. In Remark 1 we show that this assumption may be dropped.

Holding the supply-reserve distribution K fixed, fix a bidder i and consider the ag-
gregate demand of her opponents. Allowing for mixed strategies and asymmetric and
asymmetrically-informed bidders, we denote the aggregate demand of bidder i’s opponents by
Q(·; ξ), where ξ indexes the joint distribution of her opponents’ potentially mixed strategies.
As with supply-reserve distribution K, we assume that aggregate demand Q is continuously
differentiable, and show in Remark 1 that this assumption may be dropped. Although we
separately specify the supply-reserve distribution K and the mixed strategy index ξ because
the former is controlled by the seller while the latter is not, a bidder’s set of best responses
does not depend on the source of randomness in that bidder’s residual supply. Bidders’
ex post utility is determined by realized quantity and payment, and thus the dependence
of interim utility on the joint distribution of quantity and payment is unaffected by the
introduction of a random reserve price, asymmetric information among bidders, and the
possibility of mixed strategies. Thus, the bidder’s first order condition is unchanged from
the analysis in Lemma 11 (in Supplementary Appendix D), and the random reserve affects
only the distribution of realized quantity. In the language of Lemma 11,

Gi (q; b) = Eξ [K (q + Q (b; ξ) ; b)] ,

and Gi
b (q; b) = Eξ [KQ (q + Q (b; ξ) ; b) Qp (b; ξ) + KR (q + Q (b; ξ) ; b)] .

(16)

For example, when the reserve price is fixed, KR = 0 for all relevant prices, and (16) is
identical to what we find in equation (10).
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We aim to show that the seller can induce the same bidder behavior by implementing
a random reserve without constraining supply, in which case KQ = 0, and the bidder’s
pointwise first order condition is

(v (q) − b (q))Eξ [KR (q + Q (b (q) ; ξ) ; b)] = Eξ [K (q + Q (b (q) ; ξ) ; b)] .

As KQ = 0 implies that K is independent of q (and thus Q is independent of ξ), we write
this in terms of only the distribution of reserve prices F R,

(v (φ (p)) − p) F R
p (p) = F R (p) .

Thus a key simplification associated with random reserve and unconstrained supply is that
the optimal bid is determined by the reserve distribution F R and does not depend on oppo-
nent bids. Furthermore, for each quantity the optimal bid is either pointwise optimal, or this
quantity is part of an interval on which the first order conditions are ironed, cf. Woodward
[2016]. We capture these optimality conditions in the concept of first-order optimal bids
defined as follow.

Definition 2. [First-order optimality] Given a distribution of reserve prices F R, we say
that b is first-order optimal with respect to F R if:

1. If b is strictly decreasing at q, then it solves the pointwise first order condition: (v(q)−
b(q))F R

p (b(q)) = F R(b(q)).

2. If b is constant in a neighborhood of q then b(q) is a mass point of F R and it solves
the ironed first order condition:

(
F R (b (q)) − F R (b)

)
(v (φ (p)) − b) = (b (q) − b) F R

(
p
)

, where b = lim
q′↘φ(p)

b (q′) .

Intuitively, the ironing conditions state that the marginal gain from slightly extending the
constant interval (marginal additional quantity with probability F R(b(q)) − F R(b)) must
equal the marginal cost from the same (marginal additional payment with probability F R(b)).
As b is weakly decreasing, any quantity q belongs to either an interval on which b is flat or
to an interval on which b is strictly decreasing (and it might be an endpoint of both types of
intervals simultaneously). The structure of these intervals can be complex, but there is at
most a countable number of them.

Although optimal bids are first-order optimal the converse need not be true: first-order
optimality only implies that a bid satisfies pointwise first order conditions where applicable,
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and ironing conditions elsewhere. In deriving the revenue bounds below, we assume only
that the first-order conditions are satisfied, not that bids are optimal. Because any (glob-
ally) optimal bid function satisfies the first-order optimality conditions above, the bound on
revenues applies to optimal bids.

Let GK(·; b, Q) be the distribution of realized quantity given supply-reserve distribution
K, bid function b, and potentially random residual supply Q, and let GR(·; b) be the distri-
bution of realized quantity given reserve distribution F R and bid function b. As mentioned
above, GR does not depend on Q because, under random reserve, supply does not depend
on opponent bids. Letting ξ represent randomness in residual supply (e.g., mixed strategies
for a bidder’s opponents)67 we have

GR (q; b) = 1 − F R (b (q)) ,

d

dq
GR (q; b) = −F R

p (b (q)) bq (q) ;

GK (q; b, Q) = Eξ [K (q + Q (b (q) ; ξ) , b (q))] ,

d

db
GK (q; b, Q) = Eξ [Kq (q + Q (b (q) ; ξ)) Qp (b (q) ; ξ) + Kp (q + Q (b (q) ; ξ) , b (q))] ,

d

dq
GK (q; b, Q) = d

db
GK (q; b, Q) bq (q) + Eξ [Kq (q + Q (b (q) ; ξ))] . (17)

The expected revenue from bidder i when the bidder bids b and the bid leads to quantity
distribution G· is given by π (b; G·) =

∫Q
0
∫ q

0 b (x) dxdG·(q).

H.2.2 The Optimality of Random Reserve with Known Values

We begin with a bid function b which is a best response to residual supply distribution Gi(·; b)
and construct a reserve price distribution and bidder’s best response to this new distribution
that raise more revenue.

Lemma 17. Let b be a best response bid curve under residual supply distribution Gi, generated
by supply-reserve distribution K and stochastic aggregate demand Q. There is a reserve
distribution F R and a first-order optimal response bR to F R such that π

(
bR; GR

)
≥ π (b; Gi).

While the bound on revenue in Lemma 17 might depend on the equilibrium selected, the
subsequent analysis will show that this bound is weakly lower than the revenue in a unique
equilibrium under deterministic elastic supply.

67In the main text we focus on pure strategies. In this analysis we allow for mixed strategies, allowing us
to show that all randomness—exogenous or otherwise—is detrimental to the seller’s revenue.
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Proof. For clarity, we proceed under the assumption that supply-reserve distribution studied
K and aggregate residual demand Q are continuously differentiable. Following the derivation
of the result for smooth K and Q, we comment on extending the argument to potentially
discontinuous K and Q.

We construct bR and F R by first constructing an auxiliary distribution GR. As a prepara-
tory step in the construction of GR, recall that the discussion of the previous subsection shows
that under a random reserve price that induces differentiable quantity distribution GR, in
any interval in which b is strictly decreasing b solves the pointwise first-order condition

− (v (q) − b (q)) F R
p (b (q)) = F (b (q)) .

In our construction of GR we ensure that the pointwise first order conditions of an agent
bidding b are satisfied; that is,

− (v (q) − b (q)) GR
q (q) =

(
1 − GR (q)

)
bq (q) ,

and thus
d

dq
ln
[
1 − GR (q)

]
= bq (q)

v (q) − b (q)
.

Given any initial value of GR(q) (initial condition of the ODE), we can solve this differential
equation for any differentiable b < v (q). In particular, for any quantity q̃ such that b is
strictly decreasing on (q̃, q), we obtain

GR (q̃) = 1 − exp
(∫ q̃

q

bq (x)
v (x) − b (x)

dx

) [
1 − GR (q)

]
. (18)

We now construct GR and we show that GR �FOSD GK ; in particular, GR puts more
weight on larger quantities than GK does. To start, let GR(0) = GK(0). We say that an
open interval (q̃ℓ, q̃r) is maximal with respect to a property if the property is satisfied on
this interval but not on any other open interval containing (q̃ℓ, q̃r). At the left endpoint
of any maximal interval (q̃ℓ, q̃r) on which b is strictly decreasing, we define GR so that
GR(q̃ℓ) = GK(q̃ℓ), and we define GR on the interior of (q̃ℓ, q̃r) so that b satisfies the first-order
ODE given the initial condition GR(q̃ℓ). In particular, the first-order ODE determines the
value at the right endpoint of the strictly decreasing b interval, GR(q̃r). For any maximal open
interval (qℓ, qr) on which b is constant, let the value at the right endpoint be GR(qr) = GK(qr).
(Importantly, GR is well defined at qr = q̃ℓ at which the right endpoint qr of constant-b
interval coincides with the left endpoint q̃ℓ of strictly-decreasing-b interval). Notice that
for any maximal interval (qℓ, qr) on which b is constant, qℓ is either 0 or equal to a limit
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of a sequence of the right end points of maximal intervals.68 We will see below that the
values of GR on this sequence are monotonic. Since they are also bounded below (they are
nonnegative), the sequence of values of GR at these right endpoints converges, and we define
GR(qℓ) as its limit, and also set GR(q) = GR(qℓ) for q in in the interior of any maximal
open interval (qℓ, qr) on which b is constant. This concludes the construction of GR for all
quantities strictly lower than the maximum possible quantity; at this quantity we set GR to
equal 1. Thus GR is a c.d.f. iff it is monotone.

To establish monotonicity, suppose that qℓ, qr are such that qℓ < qr, GR(qℓ) ≤ GK(qℓ), and
that b is strictly decreasing on (qℓ, qr). Then on (qℓ, qr), the pointwise first-order optimality
conditions obtain, and we have

− (v (q) − b (q)) GR
q (q) =

(
1 − GR (q)

)
bq (q) , and − (v (q) − b (q)) GK

b (q) = 1 − GK (q) ;

in particular, GR and GK are continuous on (qℓ, qr). The left-hand equation holds by con-
struction of GR and the right-hand equation follows from the fact that b is a best response to
supply-reserve distribution K and opponent demand Q. By construction, the −(v(q) − b(q))
terms are equal, and so for any q ∈ (qℓ, qr) it must be that

GR
q (q)

1 − GR (q)
= GK

b (q) bq (q)
1 − GK (q)

. (19)

Suppose that there is q ∈ (qℓ, qr) such that GR(q) > GK(q). Then there is q̂ ∈ (qℓ, q)
such that GR(q̂) = GK(q̂), because the c.d.fs GR and GK are continuous on (qℓ, qr) and
GR(qℓ) ≤ GK(qℓ). At this q̂, equation 19 becomes GR

q (q̂) = GK
b (q̂)bq(q̂), and substituting in

for equations 17 gives

GR
q (q̂) = GK

b (q̂) bq (q̂) = GK
q (q̂) − Eξ [Kq (q + Q (b (q) ; ξ))] ≤ GK

q (q̂) .

We conclude that GK(q̂) = GR(q̂) implies GK
q (q̂) > GR

q (q̂), contradicting GR(q) > GK(q).
From this it follows that if b is strictly decreasing on [qℓ, qr] and GR(qℓ) ≤ GK(qr), then
GR|q∈[qℓ,qr] �FOSD GK |q∈[qℓ,qr], and, in particular, GR(qr) ≤ GK(qr). This inequality allows
us to conclude that if qr is the limit of left endpoints q̃ℓ > qr of maximal intervals, then
GR(qr) is weakly below the limit of G (q̃ℓ) on this sequence. We can conclude that that GR

is monotonic and hence a cumulative distribution function such that GR �FOSD GK .
We now define the random reserve distribution F R as follows: for any q, let F R(b(q)) =

1 − GR(q). We construct a bid function bR that is first-order optimal with respect to F R

68The limit might be over right endpoints of both strictly decreasing b and constant b intervals. We allow
for a constant sequence, that is the case where qℓ is the right end point of an adjacent interval.
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and such that bR ≥ b. Our construction is iterative: we begin with bR0 = b, then show how
to compute bR[t+1] from bRt for any t ≥ 0. Let Ωt be the set of maximal constant intervals
of bRt. For an interval (qℓ, qr) ∈ Ωt, let q̃r solve the ironed first-order optimality condition at
bid level bRt(qr),69

(
F R

(
bRt (qr)

)
− lim

q↘qr

F R
(
bRt (q)

)) (
v (q̃r) − bRt (qr)

)
=
(
bRt (qr) − bRt (q̃r)

)
F R

(
bRt (q̃r)

)
.

Since p = bRt(qr) is a level at which b is constant, there is a mass point in F R at bRt(qr),
and the first-order ironing equation cannot be solved at q̃r < qr. It follows that q̃r ≥ qr, and
moreover that bRt(q̃r) ≤ v(q̃r). Then let Ω̃t be the set of intervals (qℓ, q̃r), where (qℓ, qr) ∈ Ωt

and q̃r is derived from qr as above. We now define bR[t+1],

bR[t+1] (q) =

sup
{
bRt (qr) : q ∈ (qℓ, q̃r) ∈ Ω̃t

}
if ∃ (qℓ, q̃r) ∈ Ω̃t with q ∈ (qℓ, q̃r) ,

bRt (q) otherwise.

By construction, bRt ≤ bR[t+1] ≤ v, and thus bRt → bR for some bR.70 Where the limit bR

is strictly decreasing, it is equal to b and therefore satisfies the first-order conditions for
optimality. When the limit bR is constant, it satisfies the ironed first-order conditions for
optimality by construction. It follows that bR is first-order optimal. Finally, since b = bR0

and bRt ≤ bR[t+1] for all t, it must be that b ≤ bR.
Being weakly higher than b, the bid function bR induces a realized quantity distribu-

tion G̃R that is weakly stronger than GR (the distribution of realized quantity with reserve
distribution F R and bid b), which is in turn weakly stronger than GK , and it follows that
π(bR; G̃R) ≥ π(b; GK). Since F R implements bR as a first-order optimal bid function, the
lemma follows.

Remark 1. When supply-reserve distribution K and aggregate supply Q are discontinuous,
we adjust the first condition of the definition of a bidder’s first-order optimality at points
at which GK is not differentiable and require at these points that the left derivative with

69Measure-zero changes in bid do not affect utility or incentives. Therefore in this proof we assume,
without loss of generality, that bRt is left continuous.

70Note that in the simple case where the original bid function b is strictly decreasing, it is the case that
bR = b. The iterative process applied here handles the possible need to extend to the right the constant
intervals from the original bid function b, as well as the possibility that one constant interval “overtakes”
another in the iterative process. Note that in the latter case bR(q) > b(q) for q in the overtaken constant
interval of b.
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respect to b (which always exists, since GK is decreasing in b) satisfies71

− (v (q) − b (q)) Gi
b− (q; b) −

(
1 − GK (q; b)

)
≥ 0.

This is the only adjustment in the definition; the previous definition is unchanged at points
of differentiability and where bids are flat. We follow the construction of GR in the proof
of Lemma 17 with two adjustments: (i) we substitute the left derivative Gi

b− for derivative
Gi

b, and (ii) the differential part of the construction is separately conducted for maximal
intervals (qℓ, qr) on which b is strictly decreasing and continuous (as opposed to merely
strictly decreasing). In this way, we are able to construct GR for all relevant quantity and
price pairs, subject to verifying monotonicity as in the above proof of Lemma 17.

Monotonicity continues to hold because GK is monotone and whenever b is strictly de-
creasing and continuous, we have

0 = − (v (q) − b (q))
GR

q (q)
bq+ (q)

−
(
1 − GR (q)

)
≤ − (v (q) − b (q)) GK

b− (q; b, Q)−
(
1 − GK (q; b, Q)

)
.

(20)
For any maximal interval (qℓ, qr) on which b is continuous and strictly decreasing we prove
monotonicity by contradiction, as before. If there is q ∈ (qℓ, qr) such that GR(q) > GK(q),
there is q̂ ∈ [qℓ, qr] such that GR(q̂) = GK(q̂): even though GK is potentially discontinuous,
GR is guaranteed to be continuous on the maximal interval in question (it is the solution to
a differential equation) and GK is monotone. At this q̂, plugging equations 17 into inequality
20 gives

GK
b− (q̂) ≤

GR
q (q̂)

bq+ (q̂)
.

Since b is decreasing in q, this gives

GR
q (q̂) ≤ GK

b− (q̂) bq+ (q̂)

= GK
q+ (q̂) − Eξ [Kq+ (q + Q (b (q) ; ξ))] ≤ GK

q+ (q̂) .

The final inequality follows from the fact that the exogenous supply-reserve distribution
K satisfies Kq+ ≥ 0. Then dGR(q; b, Q)/dq ≤ dGK(q; b, Q)/dq+ at q = q̂, contradicting
GR(q) > GK(q) for some q > q̂. The remainder of the proof follows the same steps as the
original proof of Lemma 17.

71The left derivative of a function h at x is defined as hx−(x) = limε↘0(h(x) − h(x − ε))/ε. Similarly the
right derivative equals hx+(x) = limε↘0(h(x + ε) − h(x))/ε.
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H.2.3 Approximation by Strictly-Decreasing Bid Functions

We now show that we can arbitrarily approximate the first-order optimal bid bR associated
with random reserve F R with a strictly decreasing bid function b̃R, associated with some
random reserve distribution F̃ R, and that the distribution of realized quantity under this
approximation approximates the distribution of quantity under bR. Then since bR ≥ b and
b̃R ≈ bR, it follows that either b̃R approximates the revenue generated by b under reserve
distribution F R arbitrarily closely, or yields higher revenue.

Lemma 18. Given a reserve distribution F R with first-order optimal bid bR and any ε > 0,
there is a reserve distribution F̃ R with a strictly decreasing first-order optimal bid b̃Rsuch
that π(b̃R; G̃R) > π(bR, GR) − ε.

Proof. If bR is strictly decreasing the claim is trivially satisfied. Therefore, assume that bR is
constant on the (maximal) interval (qℓ, qr). Let b̃R ≤ bR be strictly decreasing on (qℓ, qr) and
such that b̃R|q /∈(qℓ,qr] = bR|q /∈(qℓ,qr] and b̃R(qr) = limq′↘qr bR(q′). Let F̃ R|p≥bR(qℓ) = F R|p≥bR(qℓ).
Then b̃R is first-order optimal for all p ≥ bR(qℓ) because the definition of first-order optimality
is pointwise.

We now show that b̃R can be specified on (qℓ, qr] so that (i) the probability that q ∈
(qℓ, qr] is lower under b̃R than under bR (thus the probability that q > qr is higher under b̃R

than under bR), (ii) b̃R is relatively close to bR, and (iii) the conditional revenue under b̃R,
given q ∈ (qℓ, qr], is not significantly below the conditional revenue under bR. First, for a
distribution F let ∆F ≡ F (b̃R(qℓ)) − F (b̃R(qr)); since b̃R is first-order optimal and is strictly
decreasing on [qℓ, qr],

∆F̃ R =
[
exp

(∫ b̃R(qℓ)

b̃R(qr)

1
v (φ̃R (y)) − y

dy

)
− 1

]
F̃ R

(
b̃R (qr)

)
<
[
exp

(
ln
[
v (qr) − b̃R (qr)

]
− ln

[
v (qr) − b̃R (qℓ)

])
− 1

]
F̃ R

(
b̃R (qr)

)
=
(

b̃R (qℓ) − b̃R (qr)
v (qr) − b̃R (qℓ)

)
F̃ R

(
b̃R (qr)

)
=

 F̃ R
(
b̃R (qr)

)
F R

(
b̃R (qr)

)
∆F R. (21)

The first inequality follows from the fact that v and φ̃R are strictly decreasing, and the final
equality follows from the fact that bR is first-order optimal with respect to F R and is flat
on [qℓ, qr]. Now suppose that F̃ R(b̃R(qr)) < F R(b̃R(qr)); by inequality (21) it must be that
∆F̃ R < ∆F R, and since F̃ R(b̃R(qℓ)) = F R(b̃R(qℓ)) it follows that F̃ R(b̃R(qr)) > F R(b̃R(qr)),
a contradiction. Then F̃ R(b̃R(qr)) ≥ F R(b̃R(qr)), implying directly that ∆F̃ R ≤ ∆F R. Thus
point (i) holds for any b̃R.

Points (ii) and (iii) are shown by construction. For δ > 0 sufficiently small, let b̃R(qr−δ) >
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b̃R(qℓ) − δ. Since F̃ R|p>b̃R(qℓ) = F R|p>b̃R(qℓ), the expected revenue generated by bid b̃R under
distribution F̃ R, conditional on p > b̃R(qℓ), is identical to the expected revenue generates by
bid bR under distribution F R, conditional on p > b̃R(qℓ). Letting b̃R|p<b̃R(qr) = bR|p<b̃R(qr),
we have ||b̃R − bR|| < (qr − qℓ)δ + (b̃R(qℓ) − b̃R(qr))δ by construction. By point (i) and
the analysis in the proof of Lemma 17, F̃ R|p<b̃R(qr) �FOSD F R|p<b̃R(qr), and so the expected
revenue generated by bid b̃R under distribution F̃ R, conditional on p < b̃R(qr), is O(δ)
lower than the expected revenue generated by bid bR under distribution F R, conditional on
p < b̃R(qr). Finally, the utility lost when p ∈ [b̃R(qr), b̃R(qℓ)] may be bounded in the following
way. When p ∈ [b̃R(qr), b̃R(qr) − δ] at most quantity δ is lost (versus bid bR), with marginal
utility at most v; this loss is incurred with at most probability 1, so this loss is bounded
above by vδ. When p ∈ [b̃R(qℓ) − δ, b̃R(qℓ)], the quantity lost (versus bid bR) is at most
(qr − qℓ) < Q, with marginal utility at most v. However, the probability that this quantity
is lost is bounded by

F̃ R
(
b̃R (qℓ)

)
− F̃ R

(
b̃R (qℓ) − δ

)
=
[
exp

(∫ b̃R(qℓ)

b̃R(qℓ)−δ

1
v (φ̃R (y)) − y

dy

)
− 1

]
F̃ R

(
b̃R (qℓ) − δ

)
≤
[
exp

(∫ b̃R(qℓ)

b̃R(qℓ)−δ

1
v (qr) − y

dy

)
− 1

]
F̃ R

(
b̃R (qℓ)

)
=
[
exp

(
ln
[
v (qr) −

(
b̃R (qℓ) − δ

)]
− ln

[
v (qr) − b̃R (qℓ)

])
− 1

]
F̃ R

(
b̃R (qℓ)

)
=
(

δ

v (qr) − b̃R (qℓ)

)
F̃ R

(
b̃R (qℓ)

)
.

This probability is thus bounded above by a term linear in δ; indeed v(·) > b(·) for all units
which are received with strictly positive probability (Lemma 8) and hence v(qr) − b̃R(qℓ) =
v(qr) − bR(qr) > 0. Then for any ε > 0 there is δ > 0 such that the revenue generated by the
first-order optimal bid function b̃R under reserve distribution F̃ R is no more than λ below
the revenue generated by the first-order optimal bid function bR under reserve distribution
F R.

The above two lemmas imply the following approximation result:

Lemma 19. Given any best response bid curve b(·) and any ε > 0, there is a massless
reserve distribution F̃ R with strictly decreasing first-order best response b̃R such that such
that the first order best response to F R generates no more than λ less revenue than b(·).
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H.2.4 An Auxiliary Uniform-Price Auction with Known Values

We maintain the auxiliary assumption that the bidder whose response we analyze has no
private information. Having shown that we can restrict attention to random reserve, we con-
tinue the analysis by showing that any strictly decreasing first-order optimal bid b̃Rgenerates
strictly less revenue than some uniform-price auction (Theorem 20), which we then bound
by pay-as-bid revenue in the next and final subsection, where we also drop the no-private-
information assumption.

Lemma 20. Given a massless distribution of reserve prices F R and a strictly decreasing
first-order optimal bid bR, there is a distribution of reserve prices F̂ R such that the uniform-
price auction under reserve distribution F̂ R generates the same expected revenue as the
pay-as-bid auction with first-order optimal bid bR and reserve distribution F R.

Proof. We may assume that the support of the distribution F R is contained in the support
of marginal values on units the bidder can win. Indeed, our assumptions on the utility imply
that this support is convex and thus reserves outside of support are either above or below it.
Probability mass of reserve prices above the support can be arbitrarily shifted to reserves in
the support, increasing expected revenue, and similarly for probability mass of reserve prices
below the support of marginal values; the latter operation might create an atom at the
bottom of the support, but as we have seen in the proofs for Section 4 (cf. Appendix E.4),
this atom does not affect the bidder’s best response behavior. Under these assumptions,
truthful reporting, b ≡ v, is the essentially unique equilibrium in a uniform-price auction
with random reserve drawn from F R. Under a random reserve distribution, each bidder’s
problem is a single-person decision problem. Because demand at a particular price does not
affect outcomes at other prices, at each price bidders should demand a utility-maximizing
quantity. As b is strictly decreasing and first-order optimal, φ and φp are well-defined and
v(φ̂R(p)) = p at all relevant prices p.

Revenue in the pay-as-bid auction under reserve distribution F R is

E [π] =
∫ b

b

(
pφR (p) +

∫ b

p
φR (x) dx

)
fR (p) dp.

Define F̂ R so that
F̂ R

(
v
(
φR (p)

))
= F R (p; s) .

By construction, F̂ R
p (v(φR(p)))vq(φR(p))φR

p (p) = F R
p (p). Additionally, Supp F̂ R = [p, v],

and in a uniform-price auction with reserve distribution F̂ R, it is weakly optimal for the
bidder to submit truthful bids for all quantities q such that v(q) ∈ [b, v]. The revenue in this
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auction is
E [π̂] =

∫ v

b
pv−1 (p) F̂ R

p (p) dp.

Apply a change of variables, so that p = v̂(φR(p′)). Then dp = vq(φR(p′))φR
p (p′)dp′. Since

φR(p) = 0, this gives

E [π̂] =
∫ b

b
v
(
φR (p′)

)
v−1

(
v
(
φR (p′)

))
F̂ R

p

(
v
(
φR (p′)

))
vq

(
φR (p′)

)
φR

p (p′) dp′

=
∫ b

b
v
(
φR (p′)

)
φR (p′) F R

p (p′) dp′.

Then compare,

E [π] − E [π̂] =
∫ b

b

(
pφR (p) +

∫ b

p
φR (x) dx

)
F R

p (p) − v
(
φR (p)

)
φR (p) F R (p) dp

=
∫ b

b

(
−
(
v
(
φR (p)

)
− p

)
φR (p) +

∫ b

p
φR (x) dx

)
F R

p (p) dp

=
∫ b

b

(
−
[

F R (p)
F R

p (p)

]
φR (p) +

∫ b

p
φR (x) dx

)
F R

p (p) dp

= −
∫ b

b
φR (p) F R (p) dp +

∫ b

b

∫ b

p
φR (x) dxF R

p (p) dp

= −
∫ b

b
φR (p) F R (p) dp +

[∫ b

p
φR (x) dxF R (p)

]∣∣∣∣∣
b

p=b

+
∫ b

b
qR (p) F R (p) dp = 0.

The transition from the second line to the third comes from the bidder’s first-order condition
under random reserve. Then the uniform-price auction with reserve distribution F̂ R gener-
ates the same revenue as the pay-as-bid auction with reserve distribution F R and first-order
optimal bid bR.

H.2.5 Revenue Dominance of Deterministic Mechanisms with Known Values

Our previous lemmas imply that, when a bidder has no private information, the seller can
weakly improve the revenue obtained from this bidder by implementing a uniform price
auction with a random reserve price. These results are independent of opponent strategies
in the pay-as-bid auction. Furthermore, we argued above that when the bidder participates in
an auction with a random reserve price (and sufficiently large fixed supply) her best response
is independent of her opponents’ strategies. Thus, if the seller knew each bidder’s private
information, they could improve revenue by implementing a bidder-specific uniform-price
auction with a random reserve price.
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We are now ready to conclude the proof of Lemma 2 by showing that the above uniform
price auction generates less revenue than a deterministic pay-as-bid auction, still in the
auxiliary environment in which bidders have no asymmetric information (equivalently, when
their information is known to the seller).

Proof. Focusing on one bidder and putting together Lemmas 17, 18, and 20 we can conclude
that for any λ > 0 and any random elastic supply in a pay-as-bid auction, there is a uniform-
price auction with random reserve that raises from the bidder we focus on at least the pay-
as-bid auction revenue minus λ. As we have seen in the first paragraph of the proof of
Lemma 20, in this uniform-price auction we may assume that the bidder bids their true
marginal value curve (at all prices in the support of the random reserve distribution), and
ex post revenue is always weakly below monopoly revenue. It follows that the uniform-
price auction’s revenue is maximized by selling the deterministic monopoly quantity with an
appropriate reserve price. By Theorem 5, this revenue is equivalent to what the seller would
obtain by implementing a pay-as-bid auction for the (deterministic) monopoly quantity, with
or without a reserve price. Thus, to maximize the revenue obtained from a single bidder
whose information is known to the seller, it is optimal to deterministically sell the bidder
the monopoly quantity.

Because bidders are symmetric, it follows that it is optimal to deterministically sell them
the aggregate monopoly quantity (note that the equilibrium price will be the monopoly price
as long as the seller sets the reserves weakly below it).

H.3 Proof of Theorem 9 (Optimality of Deterministic Mechanisms)

Proof. If the seller knows the bidders’ common signal s, the optimal quantity in a pay-
as-bid auction is Q⋆(s) ∈ arg maxQ≤Qmax Qv(Q/n; s), and in the unique equilibrium of this
pay-as-bid auction, p⋆(Q⋆(s); s) = v(Q⋆(s)/n; s).72 Let Q : R+ → R+ be a supply curve,
where Q(p) = inf{Q⋆(s) : p⋆(s) > p}. Bidder values are regular, so Q is increasing. Then
equilibrium in the pay-as-bid auction with supply curve Q is such that for any bidder signal
s, p(Q⋆(s); s) = v(Q⋆(s)/n; s), and revenue is maximized for each type independently.

H.4 Proof of Theorem 10 (Revenue Dominance of Pay-as-Bid)

Proof. Consider the (deterministic) optimal supply curve derived in Theorem 9. Given this
supply curve, there is an equilibrium of the uniform-price auction in which bidders submit
truthful bids; furthermore, because supply is deterministic the market-clearing price must

72Equilibrium uniqueness is established in Theorem 8.
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be weakly below each bidder’s marginal value for their marginal unit, hence truthful bids
provide an upper bound on uniform-price revenue. As in the pay-as-bid auction, regularity
allows us to compare auction revenues for an observable realization of the bidder-common
signal s. The market clearing price and quantity correspond then to the monopoly solution,
and maximal revenue in this equilibrium of the uniform-price auction is equivalent to revenue
in the unique equilibrium of the optimal pay-as-bid auction. No higher revenue is feasible
in the uniform-price auction—even with different distribution over supply-reserve—because
for known s the revenue is bounded above by monopoly revenue.
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