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Abstract

Efficiency and symmetric treatment of agents are the primary goals of re-

source allocation in environments without transfers. Focusing on ordinal mecha-

nisms in which no small group of agents can substantially change the allocations

of others, we show that all asymptotically efficient, symmetric, and asymptoti-

cally strategy-proof mechanisms lead to the same allocations in large markets.

In particular, many mechanisms—both well-known and newly developed—are

allocationally equivalent. This equivalence is consistent with prior empirical

findings that different mechanisms lead to similar allocations in school choice.
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1 Introduction

Efficiency and symmetric treatment of participants (fairness) are the primary goals

of resource allocation in environments without monetary transfers, such as assigning

school seats to students and allocating university and public housing. In these ex-

amples – and in our model – there are many agents relative to the number of object

types (also referred to as objects), each object type is represented by one or more

indivisible copies, and each agent consumes at most one object copy.1 Agents are in-

different among copies of the same object and have strict ordinal preferences among

objects.

A symmetric mechanism allocates the same distribution over objects to each agent

who submitted the same preference profile. To achieve symmetry we need to employ

a random mechanism because in any deterministic mechanism an object with a single

copy can be assigned to only one of the agents who would like to obtain it. For in-

stance, a serial dictatorship—a mechanism in which the agents are ordered and pick

objects in turn—is efficient but asymmetric since there is exactly one agent who is

always allocated his or her top choice. The standard procedure to symmetrize deter-

ministic mechanisms is to randomize uniformly over them. The often-used Random-

Priority mechanism chooses at random an ordering of agents and then computes the

allocation of the serial dictatorship in which agents pick objects according to the

randomly selected ordering. Randomization introduces symmetry and preserves the

incentive properties of mechanisms. In particular, the Random-Priority mechanism is

strategy-proof, that is reporting preferences truthfully first-order stochastically dom-

inates any other strategy.2 Randomization, however, entails an efficiency loss.

1See, for instance, Abdulkadiroğlu and Sönmez (2003) for school seat assignment and Chen and
Sönmez (2002) for housing allocation. In school seat assignment, the number of students is large
relative to the number of schools; in the allocation of university housing, e.g. at Harvard, MIT, or
UCLA, the set of rooms is partitioned into a small number of categories, and rooms in the same
category are treated as identical.

2Strategy-proofness in ordinal settings has been studied by Gibbard (1978), Roth and Rothblum
(1999), and Bogomolnaia and Moulin (2001).
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No symmetric strategy-proof mechanism can be efficient as shown by Bogomolnaia

and Moulin (2001). For instance, the allocation of the Random-Priority mechanism

is inefficient in the simple case in which we allocate two single-copy objects A,B

to four agents and agents 1 and 2 rank object A over object B, while agents 3

and 4 rank object B over object A. In this case, Random Priority assigns agent

1 a positive probability of object B while assigning agent 3 a positive probability

of object A; were these two agents to ex ante swap these positive probabilities, they

would improve their allocations. In general, an allocation is called efficient if no group

of agents can advantageously swap probability shares in objects, and no agent can

advantageously swap a probability share in an object for a share in an object that

is unallocated with positive probability.3 While symmetry, efficiency, and strategy-

proofness are incompatible in finite markets, they become asymptotically compatible

in large markets as shown by Kojima and Manea (2010) and Che and Kojima (2010).4

The present paper provides the first general examination of symmetric, asymp-

totically efficient, and asymptotically strategy-proof mechanisms in large markets.

Following the standard practice, we focus on mechanisms that are: (i) ordinal, that

is the random allocation depends only on agents’ reports of their ordinal preferences

over objects, and (ii) regular, that is no small group of agents can substantially impact

the allocations of other agents.5

Our auxiliary result, Theorem 1, shows that randomizations over efficient mecha-

3Equivalently, an allocation is efficient if no other allocation first-order stochastically dominates
it. This efficiency concept—known as ordinal efficiency or stochastic-dominance efficiency—was
introduced by Bogomolnaia and Moulin (2001).

4Kojima and Manea (2010) were the first to prove this important point. They showed that a
mechanism known as Probabilistic Serial is asymptotically strategy-proof. This mechanism allocates
objects through a symmetric “eating” procedure; it was introduced by Bogomolnaia and Moulin
(2001) who showed that it is symmetric and efficient but not strategy-proof. Che and Kojima (2010)
is the closest paper to ours, and we discuss it below.

5Regularity is a standard requirement in the study of large markets; see e.g. Champsaur and
Laroque (1982). The standard reasons to study ordinal mechanisms are (a) real-life no-transfer
mechanisms are typically ordinal, (b) learning and reporting one’s rankings of sure outcomes is
simpler than learning and reporting one’s cardinal utilities, and (c) ordinal preferences over sure
outcomes do not rely on agents’ attitudes towards risk. For analysis that incorporates cardinal
utilities see Hylland and Zeckhauser (1979) and Makowski, Ostroy, and Segal (1999).
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nisms are asymptotically efficient, that is the maximum size of advantageous swaps

vanishes as the market becomes large. In particular, many known mechanisms are

asymptotically efficient, and there are no efficiency reasons to favor one of them over

others in large markets.6 Another consequence of Theorem 1 is an equivalence of ef-

ficiency and ex-post Pareto efficiency in large markets. A random allocation is called

ex-post Pareto efficient if it can be represented as a randomization over efficient de-

terministic allocations. The above example of Random Priority shows that ex-post

Pareto efficient mechanisms do not need to be efficient. It turns out that in large

markets the two concepts become equivalent when we restrict attention to uniform

randomizations.7

Our main result, Theorem 2, shows that there is a unique way to achieve symmet-

ric and asymptotically efficient allocations in an asymptotically strategy-proof way;

the maximum difference between probability shares in an object an agent obtains

under any two mechanisms vanishes as the market becomes large.8 This result estab-

lishes the large-market equivalence of mechanisms, both known and unknown. The

equivalence of Theorem 2 has several important implications.

First, equivalence results, such as Theorem 2, are relevant for contentious policy

decisions such as what mechanism to choose to allocate scarce social resources. For

instance, Pathak and Sethuraman (2010) describe the deliberations of policymakers

6For instance, all uniform randomizations over any Trading Cycle mechanisms of Pycia and Ünver
(2016) (extended to the setting with copies by Pycia and Ünver, 2011) are asymptotically efficient.

7Manea (2009) shows that Random Priority may fail to be efficient in environments in which both
the number of object types and the number of agents are large; hence the above equivalence fails in
his setting. For other negative results on the relation of efficiency and ex post Pareto efficiency see
McLennan (2002) and Abdulkadiroğlu and Sönmez (2003).

8 Following the standard practice in the literature—e.g. in Che and Kojima (2010), Pathak and
Sethuraman (2010), and in the empirical papers discussed below—we establish equivalence in terms
of agents’ marginal distributions over allocated objects. A mechanism is asymptotically strategy-
proof if it is approximately strategy-proof, and the approximation error vanishes as the market
becomes large. Asymptotic strategy-proofness is a weak incentive compatibility condition that has
been intensively studied, see for instance Roberts and Postlewaite (1976), Hammond (1979), Champ-
saur and Laroque (1982), and Jackson (1992). In our context, the case for restricting attention to
strategy-proof mechanisms was made by Abdulkadiroğlu and Sönmez (2003) and Ergin and Sönmez
(2006).
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from the New York City Department of Education on how to assign school seats to

students in the supplementary round of the New York City school choice process.

Theorem 2 implies that the mechanisms considered in New York City are asymptot-

ically equivalent.9

More generally, Theorem 2 shows that to break away from the large market equiv-

alence one needs to relax one of its assumptions. In particular, in large markets we

cannot substantially improve upon the mechanisms we already know and use while re-

quiring asymptotic strategy-proofness. This message is relevant for ongoing efforts to

construct new mechanisms. For instance, Erdil (2011) showed how to construct mech-

anisms that are strategy-proof and dominate Random Priority in efficiency terms; our

results imply that his mechanisms are asymptotically equivalent to Random Priority

if they are asymptotically symmetric.10

Second, Theorem 2 suggests a theoretical explanation for empirical findings that

different school choice mechanisms lead to allocationally similar outcomes. For in-

stance, using data from NYC school choice, Abdulkadiroğlu, Pathak, and Roth (2009)

estimate that the marginal allocations of different mechanisms differ by at most 1.5%.

Using data from Boston school choice, Pathak and Sönmez (2008) estimate that the

marginal allocations in different allocation scenarios differ by at most .1%. These

surprising empirical findings are consistent with our asymptotic equivalence result.11

9The supplementary round of the New York City school choice process is well described by our
model. In particular, the New York City wanted to run a strategy-proof mechanism and treat all
students equally at all schools. Pathak and Sethuraman directly established the equivalence of two
mechanisms considered by the New York City, see below.

10While we formulate Theorem 2 for symmetric mechanisms, its proof relies only on asymptotic
symmetry of the mechanisms. For another interesting new class of mechanisms covered by our
results, see Featherstone (2011).

11Note that Boston and NYC school districts use coarse priorities in their assignments (and ran-
domize uniformly within the same priority class) while our Theorem 2 studies a canonical assignment
model in which we abstract away from the issue of priorities. Our insight here is somewhat related to
the literature on stable outcomes in large two-sided matching markets—such as resident and hospital
matching—in which each side of the market consists of agents with strict preferences over the other
side and hence coarseness of priorities and randomization are not allowed. Under their respective
assumptions, Immorlica and Mahdian (2005) and Kojima and Pathak (2008) show that the ratio of
agents who obtain the same allocation in all stable matchings asymptotically converges to 1, and Lee
(2013) shows that the ratio of agents whose utilities in all stable matchings are close asymptotically
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Finally, let us notice that Theorems 1 and 2 taken together imply that all uni-

form and regular randomizations over subclasses of the strategy-proof and efficient

deterministic mechanisms (including all Trading Cycle mechanisms) are asymptoti-

cally equivalent because any uniform randomization over such mechanisms is regular,

symmetric, and strategy-proof. The allocational equivalence is a strong argument in

favor of choosing among these mechanisms primarily on the basis of market-specific

considerations, such as tradition or simplicity.

While Theorem 2 is likely the first general result showing that all natural large

market mechanisms coincide, the equivalence of some important special mechanisms

has been proved before. In finite markets, Abdulkadiroğlu and Sönmez (1998) proved

that Random Priority and the Core from Random Endowments (a uniform random-

ization over Gale’s Top Trading Cycles) are equivalent. They focused on environments

in which each object has a single copy; Carroll (2010) and Pathak and Sethuraman

(2010) proved analogous results for environments with multiple copies.

In the large market setting of the present paper, Che and Kojima (2010) showed

asymptotic equivalence of two mechanisms: Random Priority and Probabilistic Se-

rial.12 Furthermore, by proving the equivalence of these two mechanisms, they estab-

lished the asymptotic efficiency of Random Priority. Their work is thus the closest

prior work for both our theorems. The asymptotic efficiency of Random Priority is

an important special case of our Theorem 1, while our Theorem 2 shows that the

equivalence of the two mechanisms studied by Che and Kojima is not a coincidence

but rather a fundamental property of allocation in large markets.

converges to 1. In addition, Echenique, Lee, Yenmez, and Shum (2013) examine conditions for the
uniqueness of aggregate stable matchings, and Azevedo and Leshno (2013) study the uniqueness of
stable matchings in a two-sided model with continuum of agents.

12See footnote 4 for a discussion of Probabilistic Serial.
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2 Model

A finite economy consists of a finite set of agents N , a finite set of objects Θ (also

referred to as object types), and a finite set of object copies O. By |a| we denote the

number of copies of object a ∈ Θ. To avoid trivialities, we assume that each object

is represented by at least one copy.

Agents have unit demands and strict preferences � over objects.13 We sometimes

refer to an agent’s preference ranking as the type of the agent. P denotes the set

of preference rankings, and PN is the set of preference profiles. We assume that Θ

contains the null object � (“outside option”), and we assume that it is not scarce,

|�| ≥ |N |. An object is called acceptable if it is preferred to �.

We can interchangeably talk about allocating objects and allocating copies; one

natural interpretation is that object types represent schools, and object copies rep-

resent seats in these schools. We study random allocations. An allocation µ is given

by probabilities µ (i, a) ∈ [0, 1] that agent i is assigned object a. An allocation is

deterministic if µ (i, a) ∈ {0, 1} for all i ∈ N , a ∈ Θ.14 All allocations studied in this

paper are assumed to be feasible in the following sense

∑
i∈N

µ (i, a) ≤ |a| for every a ∈ Θ,

∑
a∈Θ

µ (i, a) = 1 for every i ∈ N.

The set of these random allocations is denoted by M. A mechanism φ : PN → M is

a mapping from the set of profiles of preferences over objects to the set of allocations.

We are primarily concerned with large but finite markets. To study them let us fix

a sequence of finite economies 〈Nq,Θ, Oq〉q=1,2,... in which the set of object types, Θ,

is fixed while the set of agents Nq grows in q; we assume throughout that |Nq| → ∞
13By � we denote the weak-preference counterpart of a strict preference ranking �.
14A random allocation needs to be implemented as a lottery over deterministic allocations; Hylland

and Zeckhauser (1979) and Bogomolnaia and Moulin (2001) showed how to implement random
allocations. The implementation relies on Birkhoff and von Neumann’s theorem.
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as q → ∞. As discussed in the introduction, similar or more restrictive assumptions

are standard in the study of large markets. To avoid repetition, in the sequel we refer

to 〈Nq,Θ, Oq〉 as the q-economy, and we assume that allocations µq and mechanisms

φq are defined on q-economies. The number of copies of object a in the q-economy

is denoted by |a|q, and the set of random allocations in the q-economy is denoted by

Mq. Notice that we do not impose any assumptions on the sequence of sets of object

copies, Oq; in particular, we do not need to restrict attention to replica economies.15

We study mechanisms φq in which the effect of reports of any small groups of

agents other than j on the allocation of an agent j vanishes as q → ∞. Formally, a

sequence of mechanisms φq is regular if for every ε > 0 there is δ > 0 such that for

any preference profiles �Nq ,�′
Nq

if

|{i ∈ Nq| �′
i �=�i}|

|Nq| < δ, (1)

then for all agents j ∈ Nq such that �′
j=�j we have:

max
a∈Θ

∣∣∣φq

(�Nq

)
(j, a)− φq

(
�′

Nq

)
(j, a)

∣∣∣ < ε. (2)

We also use a weaker version of this assumption, in which (2) is satisfied for all but a

fraction ε of agents j ∈ Nq such that �′
j=�j; we refer to this weaker assumption as

weak regularity.

As the following remark illustrates, many standard mechanisms are regular.

Remark 1. Regularity of many known mechanisms is straightforward to demonstrate.

Take, for instance, Random Priority (Abdulkadiroğlu and Sönmez, 1998). To allocate

objects, Random Priority first draws an ordering of agents from a uniform distribution

over orderings, and then in turn allocates the first agent a copy of her most preferred

object, allocates the second agent a copy of his most preferred object that still has

15Some of our results rely on additional assumptions on the ratio |a|q / |Nq|, and we explicitly
impose these assumptions when needed.
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unallocated copies, etc. This mechanism is regular provided for each object a ∈ Θ

there is δ > 0 such that

lim inf
q→∞

|a|q /Nq > η. (3)

The proof fixes ε < η and has three steps.16

Step 1. Fix a priority ordering of agents. Conditional on this ordering, all al-

locations are deterministic. A change of preferences by δNq agents can change the

allocation of another agent j only if j takes one of the last δNq copies of an object

under at least one of the two preferences rankings submitted by the agents changing

their preferences.

Step 2. The probability an agent takes one of the last δNq copies of an object

a under a preference profile vanishes as q → ∞. Indeed, fix q and an ordering of

agents other than j ∈ Nq, and consider probabilities conditional on such an ordering.

If a is the favorite object for j then j would take it as long as it is available, and

the conditional probability j takes one of the last δNq copies of a is bounded above

by
δNq

|a|q−δNq
(and for large q is bounded above by δ

η−δ
). If there are objects (“better

objects”) that agent j prefers over a then j can take one of the last δNq copies of

a only after these better objects are exhausted; the probability of this happening is

bounded above by δ
η
.

Step 3. We can thus conclude that the probability that a change of preferences by

δNq agents can change the allocation of another agent j is bounded above by 2 |Θ| δ
η−δ

uniformly over j and preference profiles. The regularity claim is thus true.

A similar argument shows that uniform randomizations over fixed-endowment Hi-

erarchical Exchange mechanisms of Pápai (2000) and their counterpart among Trad-

ing Cycles of Pycia and Ünver (2016) (extended to the setting with object copies by

Pycia and Ünver (2011)) are regular provided the number of object copies satisfies

16To see why assumption (3) is needed for regularity, consider an object a ∈ Θ and a sequence of
economies such that |a|q = 1. If the preference profile �Nq is such that only two agents are interested
in object a then a change of preferences by one of them has a large impact on the allocation of the
other, violating regularity.
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condition (3).17 The regularity of Probabilistic Serial follows from Che and Kojima

(2010) and the argument for Random Priority above; the regularity of Probabilistic

Serial can also be established directly.

Furthermore, Step 1 of the above argument shows that any deterministic Serial

Dictatorships is weakly regular. A similar argument shows that fixed-endowment Hi-

erarchical Exchange mechanisms of Pápai (2000) and their counterpart among Trad-

ing Cycles of Pycia and Ünver (2016) and Pycia and Ünver (2011) are also weakly

regular.

3 Auxiliary Result: Efficiency

The natural efficiency concept in our ordinal setting is the ordinal efficiency of Bogo-

molnaia and Moulin (2001): an allocation is efficient if agents cannot trade probability

shares, and if no object is wasted.18 Formally, an allocation µ is efficient with respect

to preference profile � iff (i) for no n ≥ 2 there is a cycle of agents i1, ..., in and

objects a1, ..., an such that µ (ik, ak) > 0 and ak+1 �ik ak for all k = 1, ..., n (that is no

agents i1, ..., in can trade probability shares), and (ii) if a �i b and µ (i, b) > 0, then

all copies of a are allocated with probability 1 (that is no copy of a is wasted).19 This

concept of efficiency naturally extends the concept of efficiency from deterministic

allocations to random allocations. A mechanism φ is efficient if φ (�N) is efficient for

all preference profiles �N .

To define the asymptotic counterpart of this efficiency concept let us say that, for

any ε > 0, a random allocation µ is ε-efficient with respect to a preference profile

� iff (i) for no n ≥ 2 there is a cycle of agents i1, ..., in and objects a1, ..., an such

that µ (ik, ak) > ε and ak+1 �ik ak for all k = 1, ..., n (that is no agents i1, ..., in can

17See footnote 25 in Pycia and Ünver (2016) for an extension of Pápai’s fixed-endowment idea.
18This concept is also known as stochastic-dominance efficiency because the efficiency of an al-

location µ is equivalent to the lack of another allocation that first order stochastically dominates
µ.

19The statement of condition (i) relies on the standard practice of counting subscripts modulo n
so that ak+1 = a1 when k = n.
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trade probability shares larger than ε), and (ii) if a �i b and µ (i, b) > ε, then all

copies of a are allocated with probability at least 1− ε (that is no more than ε of a is

wasted). Given a sequence of preference profiles �Nq , a sequence of allocations µq is

asymptotically efficient if for each q = 1, 2, ... there are positive ε (q)
q→∞→ 0 such that

µq is ε (q)-efficient with respect to �Nq .

Which mechanisms are asymptotically efficient in large economies? We know some

asymptotically efficient mechanisms: Bogomolnaia and Moulin (2001) constructed one

such mechanism they called Probabilistic Serial. Recently, Che and Kojima (2010)

showed that Random Priority is asymptotically equivalent to Probabilistic Serial; it

is easy to see that their result implies that Random Priority is asymptotically efficient

in the above sense.

The question remained open for other mechanisms. Many of the random mecha-

nisms used in practice are obtained by uniformly randomizing over regular and effi-

cient deterministic mechanisms. This section addresses the efficiency question for this

large class of mechanisms. To define uniform randomizations, for any mechanism ψ

and permutation σ : N → N let us denote ψσ (�) (i, a) = ψ
(�(σ(1),...,σ(|N |))

)
(σ (i) , a).

A mechanism φ : PN → M is a uniform randomization if there exists a mechanism

ψ : PN → M such that

φ
(�(1,...,|N |)

)
(i, a) =

∑
σ:N

1−1→ N

1

|N |!ψ
σ (�) (i, a)

In general, the component mechanism ψ can be random. We say that ψ is ex-post

Pareto efficient if, for each preference profile �N , the allocation ψ (�N) is equal

to a mixture over efficient deterministic allocations. For instance, if ψ is a serial

dictatorship then φ is Random Priority. Other examples include randomizations

over fixed-endowment subsets of Papai’s Hierarchical Exchange or Pycia and Unver’s

Trading Cycles.

Theorem 1. Regular sequences of uniform randomizations over efficient and weakly
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regular deterministic mechanisms are asymptotically efficient on full-support prefer-

ence profiles.

The proof is in the appendix. This result shows that all the above-mentioned

mechanisms are asymptotically efficient. This result also shows that in our setting

efficiency and ex-post Pareto efficiency become equivalent. This is in contrast to small

finite markets in which—following the pioneering work of Bogomolnaia and Moulin

(2001)—it has been well understood that ex-post Pareto efficiency is a weaker concept

than efficiency.20

4 Main Result: Equivalence

As argued in the introduction, the natural postulates for allocation are efficiency,

symmetry, and strategy-proofness. Unfortunately, we know that in finite markets

no mechanism satisfies these three properties, see Bogomolnaia and Moulin (2001).

Requiring only that the properties are satisfied in an asymptotic sense, we address

the question of what mechanisms satisfy the three properties in large markets.

Let us first review the definitions of the standard concepts of symmetry and

strategy-proofness. Symmetry is a basic fairness property of an allocation, and is

also known as equal treatment of equals. Given preference profile �N , a random al-

location µ is symmetric if any two agents i and j who submitted the same ranking of

objects, �i=�j, are allocated the same distributions over objects, µ (i, ·) = µ (j, ·). A

random mechanism φ is strategy-proof if for any agent i ∈ N and any profile of pref-

erences �N , the allocation agent i obtains by reporting the truth, φ
(�i,�N−{i}

)
(i, ·),

first-order stochastically dominates the allocation the agent can get by reporting an-

other preference ranking �′
i, that is

∑
b�ia

φ
(�i,�N−{i}

)
(i, b) ≥

∑
b�ia

φ
(�′

i,�N−{i}
)
(i, b) , ∀a ∈ Θ.

20See also McLennan (2002), Abdulkadiroğlu and Sönmez (2003), and Che and Kojima (2010).
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This is the standard concept of strategy-proofness introduced by Gibbard (1977). We

further say that a random mechanism φ is ε-strategy-proof if for any agent i ∈ N and

any profile of preferences �N ,

∑
b�ia

φ
(�i,�N−{i}

)
(i, b) ≥

∑
b�ia

φ
(�′

i,�N−{i}
)
(i, b)− ε, ∀a ∈ Θ,�′

i∈ P .

A sequence of random mechanisms φq is asymptotically strategy-proof if for each

q = 1, 2, ... there are positive ε (q)
q→∞→ 0 such that µq is ε (q)-strategy-proof. Footnote

8 discusses the literature on asymptotic strategy-proofness.

Theorem 2. If two regular sequences of random mechanisms φq and φ′
q are asymp-

totically efficient, symmetric, and asymptotically strategy-proof, then they are asymp-

totically equivalent, that is

max
�Nq∈Pq ,i∈Nq ,a∈Θ

∣∣φq

(�Nq

)
(i, a)− φ′

q

(�Nq

)
(i, a)

∣∣ → 0 as q → ∞.

Theorem 2 has important ramifications for the ongoing work to construct improved

allocation mechanisms: in large markets we cannot improve upon the allocations

of mechanisms we already know without relaxing the requirement of (approximate)

strategy-proofness or of symmetry. Erdil (2011) and Featherstone (2011) provide

interesting examples of such an ongoing work.21

Theorem 2 also immediately implies the following.

Corollary 1. All asymptotically strategy-proof sequences of uniform randomizations

over Pareto-efficient deterministic mechanisms are asymptotically equivalent.

21The above results allow us to also obtain new insights into the strategy-proofness properties
of Probabilistic Serial. Kojima and Manea (2010) showed that agents have incentives to report
preferences truthfully in Probabilistic Serial if the number of copies is large enough relative to a
measure of variability of an agent’s utility, and Che and Kojima (2010) showed asymptotic strategy-
proofness of Probabilistic Serial provided the number of copies has asymptotically the same rate
of growth as |Nq|. Like Che and Kojima (2010), our results do not rely on assumptions on an
agent’s utility. The results allow us to relax Che and Kojima’s assumption on the number of object
copies, as well as to show that no assumption on the number of copies is needed for asymptotic
strategy-proofness at full-support preference profile sequences.
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As a heuristic for why Theorem 2 is true let us consider a setting with a continuum

of agents and assume that the mass of agents of type �, denoted |N (�)|, is strictly

positive for all �∈ P . Let |a| be the total mass of object a. One way to understand

the continuum setting is as a limit of finite economies. This limit is well-defined

provided we assume that (i) the sequence of preference profiles �Nq is such that for

each preference type �∈ P , the ratio
|{i∈Nq |�i=�}|

|Nq | converges to a constant |N (�)|,
and that

|a|q
|Nq | converges to a positive constant |a|. Because of symmetry of φ and

φ′, knowing the total mass of object a allocated to agents of type � is equivalent

to knowing the probability an agent of type � obtains object a. We will refer to

this probability as µ (i, a) or µ (�, a). A key role in our argument is played by the

following strong fairness requirement introduced by Foley (1967).22 An allocation

µ is envy-free if any agent i first-order stochastically prefers his allocation over the

allocation of any other agent j, that is

∑
b�ia

µ (i, b) ≥
∑
b�ia

µ (j, b) , ∀a ∈ Θ.

Since m (�) > 0 for all types �, regularity, symmetry and asymptotic strategy-

proofness of the sequence of mechanisms φq allow us to conclude that the limit allo-

cation (µ (�, a))�∈P×Θ is envy-free. Thus, proving that there is a unique envy-free and

efficient allocation is a step towards proving a weak version of Theorem 2 (weakened

by the imposition of the additional restrictive assumptions listed above).23

22In the proof of Theorem 2 in the appendix we use asymptotic envy-freeness, a concept defined
in Jackson and Kremer (2007) who noted its relation to incentive compatibility.

23The argument presented here can be used to prove a weak form of Theorem 2 in which we
add assumption (b), and we restrict attention to convergence for preference profile sequences such
that (a) obtains and |N (�)| > 0 for all �∈ P. Indeed, symmetry implies that φq

(�Nq

)
(i, a)

is fully determined by �Nq , object a, and the preference type � of agent i; we can thus write
φq

(�Nq

)
(�i, a) = φq

(�Nq

)
(i, a). Full-support of �Nq ensures that φq (�, a) is well-defined for any

� and large q. At each preference profile along the sequence of profiles �Nq , the mechanism is given
by

(
φ
(�Nq

)
(�, a)

)
�∈P,a∈Θ

∈ [0, 1]
P×Θ. Given compactness of this latter set, to show that two

mechanisms φq and φ′
q coincide asymptotically along �Nq it is enough to show that every conver-

gent subsequence of
(
φ
(�Nq

)
(�, a)

)
�∈P,a∈Θ

converges to the same limit. We can thus consider
a subsequence

(
φ
(�Nq

)
(�, a)

)
�∈P,a∈Θ

that converges to a limit (µ (�, a))�∈P,a∈Θ. To prove the
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To prove that efficiency and envy-freeness fully determine an allocation when

|N (�)| > 0 for all �∈ P , first note that there are constants ta > 0, a ∈ Θ, such that

µ (i, a) > 0 imply ta =
∑

b�a µ (i, b). Indeed, take i, j such that µ (i, a) , µ (j, a) > 0.

Consider agent i′ who ranks a first and otherwise ranks objects as agent i does; no

envy and efficiency imply µ (i′, a) =
∑

b�ia
µ (i, b). Similarly, for agent j′ who ranks a

first and otherwise ranks objects as agent j does, µ (j′, a) =
∑

b�ja
µ (j, b). Finally, no

envy further implies that µ (i′, a) = µ (j′, a), proving the claim. We refer to indices

ta as time and say that object a is not exhausted at all times t < ta and exhausted

at all times t ≥ ta.
24

Our assumptions uniquely determine agent-object pairs (i, a) such that µ (i, a) >

0. To see this first note that efficiency and envy-freeness imply that agents i ranking

a first get it with positive probability, µ (i, a) = ta > 0. No envy then implies that

µ (i, a) > 0 for all agents who rank a above all objects b that are not exhausted at

time ta. Let us denote the set of such types by N (a). The definition of times tak then

implies that for i ∈ N (a) we have

µ (i, a) = ta − t′a (4)

where t′a equals 0 if agent i ranks a first and otherwise equals tb for the object b that

is �i-worst among objects �i ranks above a. Furthermore, only agents from N (a)

get a with positive probability. Indeed, if agent i ranks a below some object b non-

exhausted at ta, and µ (i, a) > 0 then: (i) agent i gets object b � a with probability

below 1; (ii) consider agent j that ranks a first and b second and observe that agent

j gets a with positive probability because tb > ta > 0. Equation (4) implies that j

gets b with positive probability. Now (i) and (ii) imply that agents i and j have a

profitable trade, a contradiction showing that µ (i, a) > 0 iff i ∈ N (a).

weak version of the theorem it is then enough to show that µ (�, a) for all �∈ P and a ∈ Θ are
uniquely determined by efficiency and envy-freeness.

24This choice of terminology is motivated by parallels to the “eating-in-time” terminology of the
Probabilistic Serial mechanism of Bogomolnaia and Moulin (2001).
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To conclude the proof let us rename the objects so that

0 < ta1 ≤ ta2 ≤ ... ≤ ta|Θ| .

The efficiency then implies that

ta1 = min

{ |a1|
|N (a1)| , 1

}
, ta2 = min

{
ta1 +

|a2| − ta1 |{i ∈ N (a2) | i ranks a2 first}|
|N (a2)| , 1

}
,

and, proceeding in this way by induction, we can pin down all values ta, thus uniquely

determining allocation µ.

5 Comments on assumptions

We study regular mechanisms.25 However, the gist of our results remain valid for

all mechanisms, not only regular ones. If we drop the regularity assumption, the

analogue of Theorems 1 and 2 remain true for full-support sequences of preference

profiles defined as follows: a sequence of preference-profiles �Nq has full support if

there exists δ > 0 and q̄ such that for any q > q̄, and for any ranking of objects

�∈ P , the proportion of agents whose �Nq -ranking agrees with � is above δ. Full

support holds true uniformly on a class of sequences if they have full support with

the same δ and q̄. Full support implies that, as q grows, any preference ranking is

represented by a non-vanishing fraction of agents.26

The proofs of Theorems 1 and 2 show that they are true for full-support sequences

of profiles whether or not the mechanism is regular, and we then employ regularity

25For a discussion of regularity in the large market literature see, for instance, Champsaur and
Laroque (1982).

26In a continuum economy, the counterpart of full support says that every ordering is represented
with positive probability; in other words the distribution of orderings has full support. Our ob-
servations on full-support profiles remain valid if the assumption of non-vanishing representation
is imposed only for rankings of objects � in which all non-null objects are acceptable. Note also
that in the case of Theorem 1 we are relaxing the assumption that the uniform randomizations are
regular, while maintaining the weak regularity of the base mechanism over which we randomize.
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to extend the results to any preference profiles. Regularity is thus a dispensable

assumption because full-support sequences are typical. Indeed, full-support sequences

have asymptotically full measure in the following sense: a set S of sequences of

preference profiles is asymptotically full-measure if for every ε > 0 there exists a

sequence of sets Sq ⊂ Pq of preference profiles such that for q large enough the ratio

|Sq |
|Pq | > 1− ε, and all sequences of profiles from Sq are in the set of sequences S.

Proposition 1. Asymptotically full-support profiles have asymptotically full-measure.

Proof. Let Sδ
q ⊂ Pq be the set of preference profiles such that, for any ranking of

objects � in the q-economy, the proportion of agents whose ranking agrees with � to

|Nq| is above δ. Take ε > 0 and notice that for q large enough there exists δ (ε) > 0

such that

∣
∣
∣Sδ(ε)

q

∣
∣
∣

|Pq | > 1− ε. To complete the proof it is enough to set Sq = Sδ(ε)
q .

Another assumption we can relax is symmetry. While the heuristic argument for

Theorem 2 made substantial use of symmetry, the formal argument from Appendix

B does not, and this argument remains valid when Theorem 2 is strengthened by

relaxing the symmetry assumption to its asymptotic counterpart.27

6 Conclusion

Theorem 1 shows that – in ordinal settings – many known mechanisms are asymp-

totically efficient, and Theorem 2 establishes that effectively there is only one way

to allocate objects in an efficient, symmetric, and strategy-proof way. Thus, in large

markets, the choice among ordinal mechanisms needs to be based on criteria other

27Given a sequence of preference profiles �Nq , a sequence of random allocations µq is asymptoti-
cally symmetric if

max
i,j∈Nq such that�i=�j , a∈Θ

|µq (i, a)− µq (j, a)| → 0 as q → ∞.

A mechanism is asymptotically symmetric if the convergence is uniform across preference profiles.
In the auxiliary Theorem 1, we can also relax the assumption that the randomization is uniform and
replace it by its asymptotic counterpart.
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than efficiency or fairness. This has important implications for ongoing efforts to

construct new ordinal mechanisms.

A Proof of Theorem 1

Consider a sequence of preference profiles (�N)N={1},{1,2},.... The key step in our proof

is the following.

Lemma 1. Let θ be a preference ranking, let a be an object, and let φ be a uniform

randomization over weakly regular deterministic mechanism ψ. Let (�N)N={1},{1,2},...

be a sequence of preference profiles such that every preference ranking is represented

by at least a fraction δ of all agents at all preference profiles in the sequence. If there

is an agent with preference ranking θ who obtains a under φ with probability at least ε

at all �N , then the share of permutations σ at which some agent of type θ is allocated

object a under ψσ tends to 1 as |N | → ∞.

Proof of the lemma. Let AN ⊆ ΣN be the set of permutations σ such that no agent

of type θ obtains a at ψσ. Let BN (δ) ⊆ ΣN be the set of permutations σ ∈ ΣN such

that at least the fraction δ of agents in N obtains a under ψσ. For δ < ε
2

sufficiently

small, we can assume that BN (δ) contains at least the fraction δ2 of all permutations.

Indeed, suppose not. Then, for some large set of agents N , at most for fraction δ2

of the permutations of ψ contains more than fraction δ of agents obtaining a, and

at all other permutations at most fraction δ of agents obtain a. Thus the average

probability an agent of type θi obtains a is bounded above by δ2

δ
+ δ (1− δ2) ≤ 2δ.

By symmetry of the randomization, all these agents have the same probability of

obtaining a, and this probability is at least ε, a contradiction as ε > 2δ.

The reminder of the proof builds on the following result due to Maurey:28

28In addition to Maurey’s original paper, one may find an exposition of his result in many surveys
of concentration inequalities.
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Lemma 2. (Maurey, 1979) If f : Σ
N
→ R is Lipschitz with constant L with respect

to the distance d (σ, σ′) = 1
|N | |{i ∈ N : σ (i) �= σ′ (i)}|, then:

∣∣∣∣
{
σ ∈ ΣN :

∣∣∣∣f (σ)−
∑

τ∈ΣN
f (τ)

|ΣN |
∣∣∣∣ ≥ t

}∣∣∣∣ ≤ 2e−
t2n
16L2 |ΣN | .

Let now f (σ) be 1
|N | times the smallest number of transpositions needed to obtain

σ ∈ ΣN from some τ ∈ AN ; the function f is Lipschitz with respect to the distance

d.

Since ψN is regular, so is each ψσ
N . By regularity, there is some fixed δ̃ > 0 such

that for a fraction δ of agents to obtain a different allocation, at least a fraction ε̃

of agents needs to change their allocation. Thus, in any ψσ
N (�) for the fraction δ

of agents (all of them of of type θi) to change their allocations from something dif-

ferent than a to a, we need at least fraction ε̃ of agents to change their reports.

Since every transposition in σ can be implemented by a simultaneous change of

reports by two agents, we conclude that we need at least δ̃
2
|N | transpositions to

move from any permutation in A to any permutation in B. We can conclude that

Ef =
∑

τ∈ΣN
f(τ)

|ΣN | ≥ δ̃
2
δ > 0. Since f equals zero on AN , we conclude that all σ ∈ AN

belong to

{
σ ∈ ΣN :

∣∣∣f (σ)−
∑

τ∈ΣN
f(τ)

|ΣN |

∣∣∣ ≥ t
}

for t = δ̃
2
δ. By Maurey’s lemma, AN

can contain at most 2e−
t2n
16L2 |ΣN | permutations. Thus, as n = |N | → ∞, the fraction

of permutations in AN vanishes, contradicting the assumption that this ratio is at

least δ, and hence proving the lemma. QED

To finish the proof of Theorem 1, suppose that ε-efficiency fails for the sequence

of preference profiles �N . Thus, either condition (i) or (ii) fails on an infinite subse-

quence, and we may assume that it fails at all N considered. The analyses of these

two cases are similar; let us consider the slightly more complex case when (i) fails.

Then, at each N , there is a cycle of c agents i1, ..., ic that have a profitable swap

of size ε, that is µ (ik, ak) > ε and ak+1 �ik ak for all k = 1, ..., c. Notice that the

uniformity of randomization implies that the agents with the same preference type
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obtain the same probability shares. The resulting symmetry of allocations allows us

to assume that c ≤ |Θ| as otherwise we could shorten the cycle.

First, consider a sequence of preference profiles such that each preference type

is represented by at least some fraction δ of agents. Because there are at most |Θ|
agents in the cycle, the lemma we just proved implies that the share of permutations

σ at which all types θk have a representative who is allocated ak tends to 1 , and

in particular, there exists a permutation σ and agents jk ∈ θk such that each jk is

allocated ak under ψσ. But, this implies that ψσ, and hence ψ, are not Pareto efficient,

a contradiction.

Second, consider the general case. The regularity of sequence of mechanisms ψN

implies that there is some δ such changing the preferences of less than fraction δ

of agents changes the distributions over objects the remaining agents obtain by at

most ε
2
. By changing the preferences of at most fraction δ of agents, none of them

in the cycle i1, ..., ic, we thus obtain a sequence of preference profiles �′
N at which

cycles of agents i1, ..., ic have a beneficial swaps of size ε
2
. However, we just proved

the asymptotic efficiency of preference profile sequences such as �′
N , a contradiction

completing the proof of the Theorem. QED

B Proof of Theorem 2

In the proof we will use the ingenious construction of the Probabilistic Serial mecha-

nism of Bogomolnaia and Moulin (2001); this mechanism is both efficient and envy-

free. Probabilistic Serial treats copies of an object type as a pool of probability shares

of the object type. Given preference profile �N , the random allocation produced by

Probabilistic Serial can be determined through an “eating” procedure in which each

agent “eats” probability shares of the best acceptable and available object with speed

1 at every time t ∈ [0, 1]; an object a is available at time t if its initial endowment

θ−1 (a) is larger than the sum of shares that have been eaten by time t.
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Formally, at time t = 0, the total quantity of available shares of object type a ∈ Θ

is Qa (0) = |θ−1 (a)|, and for times t ∈ [0, 1) we define the set of available objects

A (t) ⊆ Θ and the available quantity Qa (t) of probability shares of object a ∈ Θ

through the following system of integral equations

A (t) = {a ∈ Θ|Qa (t) > 0} ,
Qa (t) = Qa (0) −

∫ t

0

|{i ∈ N | a ∈ A (τ) and ∀b ∈ A (τ) a �i b}| dτ.

We say that agent i eats from object a at time t iff a ∈ A (t) and ∀b ∈ A (t) , a �i b.

If stopped at time t, the eating procedure allocates object a ∈ Θ to agent i ∈ N with

probability

ψt (i, a) =

∫ t

0

χ (i eats from a at time τ) dτ,

where the Boolean function χ (statement) takes value 1 if the statement is true and

0 otherwise. The allocation ψ (i, a) of Probabilistic Serial is given by the eating

procedure stopped at time 1; that is ψ = ψ1.

The continuity of the functions Qa implies that for any time T ∈ [0, 1) and any

η > 0 sufficiently small, any agent i eats the same object for all t ∈ [T, T + η).

In the eating procedure there are some critical times when one or more objects get

exhausted. At this time some of the available quantity functions Qa have kinks; at

other times their slope is constant.29

Before proving Theorem 2, let us also define asymptotic envy-freeness. First, given

an ε > 0 and preference profile �Nq , let us say that an allocation µ is ε-envy free if

∑
b�ia

µ (i, b) + ε ≥
∑
b�ia

µ (j, b) , ∀a ∈ Θ, ∀i, j ∈ Nq.

Given a sequence of preference profiles �Nq , we say that a sequence of allocations

29This structure of quantity functions Qa implies that we can define the allocation of Probabilistic
Serial through a system of difference equations; such definitions are given in Bogomolnaia and Moulin
(2001), and, for the environment with copies, in Kojima and Manea (2010).
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µq is asymptotically envy free if there are positive εq → 0 such that µq is εq-envy

free. We say that a sequence of mechanisms φq is asymptotically envy-free if there

are positive ε (q)
q→∞→ 0 such that allocations φq

(�Nq

)
are εq-envy free for all �Nq .

Lemma 3. Fix a full-support sequence of preference profiles. If a sequence of random

allocations µq is asymptotically efficient and asymptotically envy-free, then it coincides

asymptotically with the allocations of Probabilistic Serial. Moreover, if a sequence of

mechanisms φq is asymptotically efficient, symmetric, and asymptotically envy-free,

and a class of profile sequences S has uniformly full support, then φq converges to

Probabilistic Serial uniformly on this class, that is

max
(�Nq)q=1,2,...

∈S, i∈Nq , a∈Θ

∣∣φq

(�Nq

)
(i, a)− φ′

q

(�Nq

)
(i, a)

∣∣ → 0 as q → ∞.

Proof. Fix any sequence of full-support preference profiles �Nq and an asymptot-

ically efficient and asymptotically envy-free sequence of allocations µq. Asymptotic

efficiency implies that for any small ε > 0 and large M > 0 there is q̄ such that for

q ≥ q̄, the allocations are ε
M2 -efficient, and, in particular, there are no two agents

who could swap probability shares of size ε
M2 in some two objects. By asymptotic

envy-freeness we can assume that for q ≥ q̄ each agent i’s allocation ε
M2 -first order

stochastically dominates allocations of any other agent j in agent i’s preferences, that

is ∑
b�ia

µq (i, b)−
∑
b�ia

µq (j, b) ≥ − ε

M2
for all a ∈ Θ.

We fix q ≥ q̄ and, to economize on notation, we drop the q-subscript when referring

to this fixed economy N = Nq and its allocation µ = µq. We also drop the preference

argument when referring to the allocation of Probabilistic Serial ψ.

To prove the lemma it is enough to show that

∑
a′�ia

µ (i, a′) ≥
∑
a′�ia

ψt (i, a′)− ε

M
(5)
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for all t ∈ [0, 1], agents i, and objects a ∈ Θ. Indeed, this set of inequalities for t = 1,

together with efficiency of the Probabilistic Serial ψ1, imply that |µ (i, a)− ψ1 (i, a)| <
ε for all i and a, provided M ≥ |Θ|.

By way of contradiction, assume the above inequality fails for some time, agent,

and object. Let T be the infimum of t ∈ [0, 1] such that there exists i ∈ N and

b ∈ Θ such that
∑

a�ib
µ (i, a) <

∑
a�ib

ψt (i, a)− ε
M

. Since there are a finite number

of agents and objects, there is an agent and object for which the infimum is realized;

let us fix such an agent and such an object and call them i and b, respectively. Let us

assume that b is the highest ranked object in i’s preferences for which the infimum is

realized.

Step 1. Inequalities (5) are satisfied at t = T because the mapping t �→ ψt (i, a)

is continuous and the inequalities are satisfied for t ∈ [0, T ). In particular, the cutoff

time T belongs to [0, 1).

Step 2. At time T of the eating procedure, agent i must be eating from b. Indeed,

if i is eating from an object a �i b at T , then ψT (a′) = 0 for all objects a′ ≺i a,

and hence if (5) is violated for agent i and object b then it is violated for agent i and

object a. This would contradict the assumption that i ranks b above all other objects

for which the infimum T is realized. If i is eating from an object a ≺i b at time T

then
∑

a′�ib
µ (i, a′) ≥ ∑

a′�ib
ψT (i, a′)− ε

M
=

∑
a′�ib

ψt (i, a′)− ε
M

for t just above T ,

again contrary to T being the infimum of t at which (5) is violated for i and b.

Step 3. Agent i gets object b or better with probability T− ε
M

, that is
∑

a′�ib
µ (i, a′) =

T − ε
M

. Indeed, by Step 2, agent i is eating from b at time T in the eating proce-

dure, and thus
∑

a′�ib
ψT (i, a′) = T . Because (5) is satisfied for t = T , we get∑

a′�ib
µ (i, a′) ≥ ∑

a′�ib
ψT (i, a′) − ε

M
= T − ε

M
. The inequality is binding because

functions t �→ ψt (i, a′) are continuous in t and T is the infimum of times at which (5)

is violated.

Step 4. If b is the favorite object of agent j ∈ N , then µ (j, b) ∈ [
T − ε

M
, T − ε

M
+ ε

M2

]
.

Indeed, by Step 1, the top choice object b is still available at time t in the eating
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procedure, and thus ψT (j, b) = T . Because (5) is satisfied at time T we thus get

µ (j, b) ≥ T − ε
M

. Furthermore, envy-freeness of µ implies that µ (j, b) ≤ T − ε
M

+ ε
M2

as otherwise the outcome of agent i would not ε
M2 -first-order stochastically dominate

for agent i the outcome of agent j .

Step 5. If b is the favorite object of agent j ∈ N , then ψ1 (j, b) > T . Indeed,

if not, then in the eating procedure b would be exhausted at time T , contrary to i

eating b at time T and thus at some times t > T .

Step 6. There is an agent k ∈ N such that µ (k, b) > ψ1 (k, b) + 3ε
M2 . Indeed, by

the asymptotic full-support assumption at least a fraction δ of agents ranks b as their

first choice. Steps 3 and 4 imply that under µ these agents get at least
(M−1)ε

M2 less b

than they get under ψ. Because δ > 0 and is independent of M , for M large enough

the ε
M2 -efficiency of µ implies that there must be an agent k who gets 3ε

M2 more b

under µ than under ψ1.

Step 7. There is an object c �= b that agent k from Step 6 ranks just above b.

Indeed, the claim follows from Steps 4, 5, and 6.

Let us fix agent k and object c satisfying Steps 6 and 7.

Step 8. Under µ, agent k gets object b or better with probability strictly higher

than T− ε
M
+ 3ε

M2 . Indeed, Step 1 and the availability of object b at time T in the eating

procedure imply that
∑

a�kc
µ (k, a) ≥ ∑

a�kc
ψT (k, a) − ε

M
= T − ψT (k, b) − ε

M
≥

T − ψ1 (k, b)− ε
M

. The claim then follows from Step 6.

To conclude the proof, notice that by the asymptotic full support assumption,

there exists an agent j who ranks objects in the same way as agent k except that

i puts b first. By Step 6, µ (k, b) > ε
M2 , and thus the lack of swaps of size ε

M2 (the

consequence of ε
M2 -efficiency of µ) implies that

∑
a�kb

µ (j, a) < ε
M2 . Step 4 thus

implies that under µ the probability j gets object c or better is between T − ε
M

and

T − ε
M

+ 2ε
M2 , and, by Step 8, it is smaller than the probability k gets these objects.

This contradicts envy-freeness of µ. The contradiction proves (5), and the first part

of the lemma.
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An examination of the above argument shows that the choice of ε,M , and q̄ can

be made uniformly for µq = φq

(�Nq

)
on a class of preference profile sequences with

uniformly full-support, proving the second part of the lemma.

Proof of Theorem 2. First note that it is enough to prove the result assuming that

φ′
q are Probabilistic Serial. Second, notice that regularity, symmetry, and asymptotic

strategy-proofness imply that φq

(�Nq

)
is asymptotically envy free for all �Nq . The

above lemma shows a uniform convergence of φ
(�Nq

)
to Probabilistic Serial for all

sequences of preference profiles �Nq such that for some δ > 0 and positive integer q̄,

for all q > q̄ each ranking �∈ P is represented in �Nq by at least fraction δ of agents.

Let us then fix any sequence of profiles �Nq , and derive the convergence for �Nq from

the regularity of φq and the convergence for asymptotically full-support sequences of

profiles �′
Nq

such that (1) is satisfied. The convergence is uniform across preference

profiles, proving Theorem 2. QED
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