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Abstract

We provide the first definition of a Double Auction that applies to both finite and
infinite markets and does not rely on any regularity assumptions. In particular, our
definition allows ties in reported values. In all markets, our Double Auction clears the
market, and implements a Walrasian equilibrium. Our Double Auction nests as a special
cases the standard k-Double Auction for finite markets and the Double Auction for
continuous and strictly monotone demand and supply for infinite markets. We also
show that the convergence of finite to infinite Double Auctions obtains in absence of
any regularity assumptions.
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1 Introduction

Double auctions are amongst the most ubiquitous market mechanisms that clear
the market, matching demand and supply. They are at the core of stock, asset,
and commodity markets on many platforms and exchanges. Potential buyers and
sellers submit buy and sell orders to a central clearinghouse that then establishes
who is involved in trade and what the market price is. The market price is selected
to clear the market, that is, to equilibrate demand and supply. The idea to match
demand and supply has been a central in economic theory, going back to Cournot,
Jenkin, Marshall, Walras and other forefathers of economics.1

We provide a unified double auction mechanism that applies to both finite
and infinite markets and does not impose any regularity assumptions on demand
and supply. For markets with finitely many traders, double auction mechanism
were formally defined as the k-Double Auction (Wilson, 1985; Rustichini et al.,
1994),2 who provide explicit formulae for calculating market clearing prices that
do not extend to infinite markets. For markets with infinitely many traders, the
definition of double auction mechanisms rely on regularity assumptions on the
elasticity of demand and supply such as continuity and strict monotonicity, cf.
Mas-Colell et al. (1995) and Reny and Perry (2006); these assumptions ensure
that a market clearing price exists and is unique. Our unified framework for finite
and infinite markets allows to carry over results from the more tractable infinite
model to approximate large finite markets.

The regularity assumptions of the prior literature on large double auctions are
satisfied in certain settings but fail in other settings of economic importance. For
instance, they fail if the demand is locally perfectly elastic or locally perfectly
inelastic.3 The key reason why demand (or supply) is perfectly elastic are ties
between bids (and resulting atoms in the distribution of bids) while inelasticity is
created by the absence of certain bids. Ties and gaps—and hence the failure of
regularity—may occur for various reasons. They are caused by the indivisibility

1See, for example, Friedman and Rust (1993) for an overview of the use of double auctions in markets,
and Humphrey (1992) for a history of the concept.

2The two formulations are equivalent; we shall use the formulation by Rustichini et al. (1994). See
also earlier formulations for the bilateral k-double auction case by Chatterjee and Samuelson (1983) and
Satterthwaite and Williams (1989a).

3Perfect elasticity creates discontinuities of demand, which may break the existence of a market clearing
price as recognized by Rustichini et al. (1994). Perfect inelasticity makes demand constant in some price
regions, and there might exist multiple market clearing prices.
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of currency: $0.01 is often the smallest bid increment in stock trading, $0.0001
in currency trading, while other markets have much larger increments, e.g., art
auctions and NFT trading.4 The presence of large buy or sell orders leads to ties.
Ties might also result from traders strategically bidding the same as they aim
to influence the market price or bid-related fee payments (Jackson et al., 2002;
Woodward, 2019; Jantschgi et al., 2022); strategic bidding might also lead to
traders avoiding certain bids. Finally, ties arise when traders with common values
herd (Banerjee, 1992; Bikhchandani et al., 1992) or when traders are boundedly
rational and imitate each other (Shiller, 2000).

The main contributions of this article are as follows. We define the unified
Double Auction mechanism. Our Theorem 1 shows that it implements market
clearing and Walrasian equilibrium with regard to revealed demand and supply.5

Theorem 2 shows that our Double Auction nests earlier formulations including
the k-Double Auction in finite markets and continuous and strictly monotone
demand and supply models in infinite markets. Theorems 3 and 4 establish the
convergence of finite to infinite markets. The table, presented at the end of this
section, summarizes the prior state of knowledge alongside the contributions that
our unified framework has introduced.

While we are not concerned with strategic considerations, there is a large
body of work that shows that the double auction is asymptotically truthful and
efficient, thus providing a theoretical justification for its widespread use in practice,
see. e.g., Wilson (1985), Rustichini et al. (1994), Satterthwaite and Williams
(2002), Jackson and Swinkels (2005), Tatur (2005), Cripps and Swinkels (2006),
Reny and Perry (2006), and Azevedo and Budish (2019). These papers rely
on prior definitions of the double auction mechanism and the aforementioned
regularity assumptions. Jantschgi et al. (2022) relies on our definition to study
how transaction costs affect the strategic behavior in double auctions; as discussed
above, the presence of transaction costs leads to the violation of the earlier
regularity assumptions.

Our paper belongs to the recent wave of work extending canonical mecha-

4See U.S. Securities and Exchange Commission (2005) for stock trading, Bank for International Settlements
(2019) for the foreign exchange market, and OpenSea (2022)’s User Guide for a large NFT trading platform.

5A Walrasian equilibrium consists of an allocation (including prices), such that no trader – given their
revealed preferences – desires any other affordable bundle. Prior to our work, the link between double auctions
and Walrasian equilibrium had only be shown under the above mentioned regularity assumptions; see Wilson
(1985); Rustichini et al. (1994).
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nisms from finite to infinite markets and showing convergence between the two:
Abdulkadiroğlu et al. (2015) and Azevedo and Leshno (2016) extended deferred
acceptance, Che and Kojima (2010) extended probabilistic serial and random serial
dictatorship, and Leshno and Lo (2020) extended top trading cycle mechanisms.

Summary of prior state of knowledge and our contribution

Finite markets Convergence Infinite markets

Mechanism Walrasian link −→ Mechanism Walrasian link

With regularity
assumptionsa W85, RSW94 W85b, RSW94b RP06 MWG95, RP06 MWG95, RP06b

W/o regularity
assumptions W85, RSW94 Proposition 1 Theorem 3 & 4 Theorem 1 Proposition 1

Unified framework (Theorem 1 & 2)

Abbreviations: Wilson (1985), Rustichini, Satterthwaite, and Williams (1994), Mas-Colell,
Whinston, and Green (1995), Reny and Perry (2006)

aFor finite markets, this implies no ties. In infinite markets, Mas-Colell et al. (1995) examines
the standard model of continuous, strictly monotone demand and supply, while Reny and Perry
(2006) addresses equilibrium-driven supply and demand with added assumptions on analytical
properties and discrete bids and asks.

bThese papers show that there exists a market clearing price equating demand and supply,
which essentially provides a link to Walrasian equilibrium, see Proposition 1 below.

2 The market

We study two-sided markets with traders interested in either buying or selling
a finite number of indivisible units of a good. Each trader can submit multiple
single-unit buy or sell orders. We study double auctions, market clearing, and
Walrasian equilibria taking these orders as primitives.

Denote by B ⊂ R the set of buy orders (b ∈ B) and by S ⊂ R the set of sell
orders (s ∈ S). Consider two cases: a market with finite numbers of orders on
each market side (finite market) and a market with continuum of orders on each
market side (infinite market). When the market has m buy orders and n sell
orders, label orders as B = {1, 2, ...,m} and S = {1, 2, ..., n}. When the market
has a continuum of orders, the labels are real numbers from closed intervals B ⊂ R
and S ⊂ R. Denote by µB and µS the counting measure (in the finite case) or
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the Lebesgue measure (in the infinite case) on the sets B and S.
Every order i includes a value vi ∈ V = [v, v] ⊂ R+, where V is the space of

possible values. We assume that the functions vB : B → V and vS : S → V that
assign values to orders are Borel. A buy order’s value specifies a bid, that is, the
maximum willingness to pay. A sell order’s value specifies an ask, that is, the
minimum willingness to sell.

Given all buy and sell orders, a double auction chooses a market outcome
determined by a market price P ∗ and an allocation identifying subsets of orders,
B∗ ⊂ B and S∗ ⊂ S, that are filled. For every filled buy order the associated
trader buys one unit of the good, and for every filled sell order the associated
trader sells one unit of the good. The market price is what each trader pays or
receives for every filled order.

What remains to be done is to define the market price and the subsets of filled
orders B∗ and S∗. As discussed in Section 1, the preexisting definitions relied on
market finiteness or ad hoc regularity assumptions. We address this question in
general, starting with the auxiliary concepts of market clearing and Walrasian
equilibria.

3 Market clearing and Walrasian equilibria

The market price in a double auction should be market clearing, that is balance
supply and demand. The terms market clearing price and Walrasian equilibrium
price are often used interchangeably, albeit having different definitions. We
next provide formal definitions of market clearing and Walrasian equilibrium via
demand and supply, and show their equivalence.

A series of auxiliary lemmas on analytical properties of demand and supply,
as well as the geometrical properties of the set of market clearing prices in our
framework, is relegated to Appendix A. The lemmas are instructive to understand
our main results but they are known for other models (e.g., finite economies or
economies with divisible goods).6

Consider the set of all orders with reported bid or ask (strictly) above or

6 For perfectly divisible goods, see, for example, Debreu (1959) and Arrow and Hahn (1971) for markets
with finitely many orders and Hildenbrand (1974) for markets with a continuum of orders. For a discussion of
demand and supply in the finite k-Double Auction, see, for example, Rustichini et al. (1994). For our most
general case, a market with indivisible goods and a continuum of orders, see, for example, Mas-Colell (1977)
and Azevedo et al. (2013) for some analytical properties of demand and supply correspondences.
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below a price P . For a relation R ∈ {≥, >,=, <,≤}, we introduce the shorthand
notation BR(P ) = {b ∈ B : vbRP} and SR(P ) = {s ∈ S : vsRP}.

Demand at price P is defined as the mass of all buy orders with bid above
P and, similarly, supply at price P is defined as the mass of all sell orders with
ask below P . To account for orders with a bid or ask equal to a price P , we
distinguish between weak and strict inequalities by defining demand and supply
functions and correspondences.

Definition (Demand and supply). The demand and supply functions at price
P are Df(P ) = µB(B≥(P )) and Sf(P ) = µS(S≤(P )). The demand and supply
correspondences are the set-valued functions Dc(P ) = [µB(B>(P )), µB(B≥(P ))]
and Sc(P ) = [µS(S<(P )), µS(S≤(P ))].

Analytical properties of demand and supply functions, as well as the connection
to their correspondences are relegated to Appendix A.

Other market metrics we will use are how much trade is possible at price P ,
and how big the difference is between demand and supply at that price.

Definition (Trade volume and excess). The maximally achievable trade volume
at price P is Q(P ) = min(Df(P ), Sf(P )) and the minimally achievable excess
Ex(P ) = |Df (P )− Sf (P )|. If Df (P ) > Sf (P ), call Ex(P ) excess demand, and if
Df (P ) < Sf (P ), call Ex(P ) excess supply.

The trade volume Q(P ) at price P is the maximal possible mass of trade that
can be facilitated at price P , while respecting individual rationality.

We now define the set of prices that balance demand and supply, that is, prices,
where the demand and supply correspondences intersect.

Definition (Market clearing prices). A price P is a market clearing price, if
Dc(P ) ∩ Sc(P ) 6= ∅. Denote the set of all market clearing prices by PMC .

We discuss the connection between market clearing, trade volume, and excess
in Appendix A. In Lemma 5 we observe that the set of market clearing prices is
non-empty, convex, and closed. However, the excess at a market clearing price is
not necessarily equal to zero.

We define Walrasian equilibrium with respect to submitted buy and sell orders.
In equilibrium, the market clears, that is, the same number of buy and sell orders
are filled (trade-balance). Every buy order with bid strictly above the market price
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and every sell order with ask strictly below the market price are filled (stability).
No buy order is filled at a price above its bid price and no sell order is filled at a
price below its ask price (individual rationality). Formally:

Definition (Walrasian equilibrium). A market outcome (P ∗,B∗,S∗) is a Wal-
rasian equilibrium, if it balances trade (µB(B∗) = µS(S∗)), it is stable (B>(P ∗) ⊂
B∗ and S<(P ∗) ⊂ S∗), and it is individually rational (B∗ ⊂ B≥(P ∗) and S∗ ⊂
S≤(P ∗)).

The sets of market clearing prices and Walrasian equilibrium prices coincide.

Proposition 1 (PMC = PEQ). A price is a market clearing price if and only if
it is a Walrasian equilibrium price.

We provide the proof in Appendix B.1.7

4 Main results

In this section we define the Double Auction and show that it results in market
clearing and Walrasian equilibrium. Moreover, we show that it nests the k-Double
Auction in finite markets and continuous and strictly monotone demand and
supply models as special cases, and establish convergence of finite to infinite
markets.

4.1 The Double Auction

We here present our unified mechanism of double auctions for finite and infinite
markets. Recall that at the end of Section 2, we defined such auctions leaving
open the question how to determine the market price and the sets of filled orders.

Definition (Double Auction: Market Price and Filled Orders). Given all buy
and sell orders, the Double Auction sets a market price P ∗ in the interval of
market clearing prices

P ∗ ∈ [minPMC , maxPMC ]

7The existence of Walrasian equilibria in markets with unit demand for an indivisible good has been
established, see, e.g., Quinzii (1984) for finite markets and Mas-Colell (1977) for infinite markets. Within
our framework, this follows from Proposition 1 and the existence of market clearing prices (Lemma 5) in
Appendix A.
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and fills the following sets of buy orders B∗ and sell orders S∗:

B∗ = B≥(P ∗) and S∗ = S≤(P ∗) if there is no excess at P ∗

B∗ = B>(P ∗) ∪ B̃ and S∗ = S≤(P ∗) if there is excess demand at P ∗

B∗ = B≥(P ∗) and S∗ = S<(P ∗) ∪ S̃ if there is excess supply at P ∗

B̃⊂B=(P ∗) and S̃⊂S=(P ∗) are sets of orders selected according to some rationing
rule to ensure that the trade is balanced, that is µB(B∗) = µS(S∗).

The Double Auction allows for arbitrary pricing and rationing rules. Examples
of pricing rules include setting the market price P ∗ as a convex combination of
the endpoints of PMC (Rustichini et al., 1994) or choosing the price uniformly at
random. A standard example of a rationing rule is to select orders uniformly at
random.8 We prove the existence of a uniform rationing rule in Lemma 11. Other
pricing and rationing rules make the choice endogenous based on aspects of the
environment that are not part of our model, e.g., based on the timing with which
buy or sell orders were submitted or based on the volume of the total order.

Theorem 1 (Properties of the mechanism). The Double Auction is well-defined
for any market instance, it maximizes the trade volume, and implements market
clearing and Walrasian equilibrium.

We provide the proof in Appendix B.2.

4.2 Nesting of existing mechanisms

For the case of finitely many orders, the standard double auction mechanism is
Rustichini et al. (1994)’s formulation of the k-Double Auction, which extends
the bilateral models of Chatterjee and Samuelson (1983) and Satterthwaite and
Williams (1989a) and is equivalent to an earlier formulation of Wilson (1985).

Definition (Finite k-Double Auction (Rustichini et al., 1994)). Given all m+ n

bids and asks associated to m buy orders and n sell orders, denoted by the set v,
define by v(l) its l’th smallest element. For k ∈ [0, 1], the k-Double Auction sets

8Buy orders in B̃ are selected uniformly at random from B=(P ∗) if the probability P[b ∈ B̃] is the same
for all b ∈ B=(P ∗). The random selection from S=(P ∗) is defined analogously.
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the market price P ∗ as

P ∗ = kv(m) + (1− k)v(m+1),

and fills all buy orders with bid strictly above and all sell orders with ask strictly
below the market price to be involved in trade. For all P ∗ ∈ (v(m), v(m+1)), the
numbers of such buy and sell orders are equal and the mechanism terminates.9

Furthermore, when P ∗ = v(m) or P ∗ = v(m+1), the maximum number of buy or
sell orders with bid or ask equal to the market price is included in trade such that
the final numbers of filled orders on both market sides are equal. In case there
are more orders with bid or ask equal to the market price than can be selected, a
fair lottery selects the filled orders.

In infinite markets, double auction mechanisms have been defined for textbook
models with continuous and strictly monotone demand and supply functions with
a unique intersection P ∗, see, e.g., Mas-Colell et al. (1995) and Reny and Perry
(2006).10

Definition (Continuous and strictly monotone demand and supply models (Reny
and Perry, 2006; Mas-Colell et al., 1995)). The market price P ∗ is set as the
unique intersection of the continuous and strictly monotone demand and supply
functions, that is Df(P

∗) = Sf(P
∗). The sets of filled buy and sell orders are

B∗ = B≥(P ∗) and S∗ = S≤(P ∗) (no tie-breaking).

The Double Auction nests the k-Double Auction for finite markets and contin-
uous and strictly monotone demand and supply models for infinite markets as
special cases.

Theorem 2 (Nesting of prior mechanisms). The Double Auction nests as special
cases the k-Double Auction for finite markets (Wilson, 1985; Rustichini et al.,
1994) and continuous and strictly monotone demand and supply models (Mas-
Colell et al., 1995; Reny and Perry, 2006).

We provide the proof in Appendix B.3.
9We provide a detailed discussion in Lemma 7 in Appendix A.

10In the presence of ties due to a discretization of the action space, Reny and Perry (2006, Online
Supplement) provide an argument for tie-breaking in infinite markets. It can be checked straightforwardly
that the tie-breaking rule is equivalent to the allocation rule of the Double Auction. However, we omit a
proof, because they do not provide a full mechanism in the presence of ties.

9



4.3 Convergence

We establish convergence properties of the set of market clearing prices from finite
to infinite markets. For k = 1, 2, 3, ..., a sequence of finite markets (Bk,Sk, vkB, vkS)
is a growing sequence of markets, if for all k ≥ 1 it holds that Bk ⊂ Bk+1,
Sk ⊂ Sk+1, and for all b ∈ Bk and s ∈ Sk it holds that vkB(b) = vk+1

B (b) and
vkS(s) = vk+1

S (s). We normalize measures µkB and µkS, and therefore demand and
supply, by multiplying with factors β

|Bk| and
σ
|Sk| , with β, σ strictly positive and

finite real numbers. Therefore, the measures µkB and µkS in the sequence of finite
markets have fixed mass β and σ, corresponding to the proportion of buy and sell
orders. A growing sequence of finite markets is convergent with limit (B,S, vB, vS)
if for all k ≥ 1 it holds that Bk ⊂ B, Sk ⊂ S, vkB(b) = vB(b) and vkS(s) = vS(s),
and limk→∞ supP∈R |Dk

f (P )−Df (P )| = 0 and limk→∞ supP∈R |Skf (P )−Sf (P )| = 0.
That is, the demand and supply functions converge uniformly. Denote by PkMC

and PMC the corresponding sets of market clearing prices in the sequence of finite
markets and in the limit market.

For two non-empty sets A,B ⊂ R with representative points a ∈ A and
b ∈ B, we define the distance between a and b as the Euclidean distance d(a, b) =
|a − b|, between a and B as d(a,B) = infb∈B d(a, b), and between A and B as
d(A,B) = infa∈A d(a,B) = infb∈B d(A, b). Denote the diameter of a set A as
diam(A) = | supA− inf A|.

Theorem 3 (Convergence). For any convergent sequence of finite markets
(Bk,Sk, vkB, vkS) with limit (B,S, vB, vS), it holds that

lim
k→∞

d(minPkMC ,PMC) = 0 and lim
k→∞

d(maxPkMC ,PMC) = 0.

We provide the proof in Appendix B.4. Note that by Proposition 1 the
sequence of Walrasian equilibrium prices has the same convergence property. If
a unique market clearing price exists in the limit, then Theorem 3 implies that
limk→∞ diam(PkMC) = 0, i.e., the set of market clearing prices becomes small in
large markets.

In economic analyses of finite markets it is common to assume that agents’ pref-
erences are drawn from continuous distributions (e.g., Myerson and Satterthwaite
1983; Chatterjee and Samuelson 1983; Rustichini et al. 1994). Are such draws
likely to generate convergent sequences of economies as we grow the market size?
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We answer this question in the positive, thus closing the loop on the relationship
between finite and infinite markets.

We study randomly generated economies and show that as the market size
grows they convergent almost surely to a limit infinite market economy and we
provide a bound on the speed of convergence.11 Our Theorem 4 then implies that
Double Auctions in these markets also converge. As discussed in the Section 1, our
convergence result does not rely on any continuity assumptions on distributions
from which finite economies are drawn.

For simplicity and without loss of generality, we restrict our attention to
equally scaled market sides, that is, we consider an infinite market (B,S, vB, vS)
with µB(B) = 1 and µS(S) = 1. We construct a random growing sequence of finite
markets (Bn,SnvnB, vnS) from a limit market (B,S, vB, vS) as follows: Consider a
sequence of buy orders b1, b2, ..., bn and a sequence of sell orders s1, s2, ..., sn. Note
that P 7→ Sf (P )/σ and P 7→ 1 − Df (P+)/β are cumulative distribution functions.
The bids of buy orders and the asks of sell orders are drawn independently from
distributions with these two cumulative distribution functions, which we denote
by FB for bids and FS for asks.

Theorem 4 (Random economies and convergence rate). A random growing
sequence of finite markets (Bn,Sn, vnB, vnS) generated by independent sampling from
a limit market (B,S, vB, vS) converges to the limit market a.s. at an exponential
rate.

We provide the proof in Appendix B.5.

5 Examples

In the following two finite markets we illustrate our definitions and results (in-
cluding previewing some of the lemmas we introduce in the Appendix A). In both
markets, there are two buy orders B = {b1, b2} and one sell order S = {s1} such
that v1b ≥ v2b > v1s . The two markets differ in whether the buy orders include ties
or not: in the market with ties v1b = v2b , and in the market without ties v1b > v2b .

11Related insights for matching markets without transfers were established by Azevedo and Leshno (2016).
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Demand and supply. Demand and supply functions are

Df (P ) =


2 if P ≤ v2b

1 if v2b < P ≤ v1b

0 if P > v1b

and Sf (P ) =

{
0 if P < v1s

1 if P ≥ v1s .

For the supply correspondence, it follows from Lemma 2 that Sc(P ) = Sf (P ) for
P 6= v1s and Sc(v

1
s) = [0, 1]. As mentioned above, the demand correspondence

depends on whether ties exist or not. Without ties, it holds that Dc(v
1
b ) = [1, 2],

Dc(v
2
b ) = [0, 1], and Dc(P ) = Df (P ) otherwise. With ties, it holds that Dc(v

1
b ) =

Dc(v
2
b ) = [0, 2], and again Dc(P ) = Df (P ) otherwise.

(Strong) market clearing prices. In the market without ties, the set of strong
market clearing prices PSMC is equal to the half-open interval PMC = (v2b , v

1
b ],

while the set of market clearing prices PMC is equal to the closed interval [v1b , v2b ].
Therefore, in line with Lemma 6, PMC = PSMC holds. In the market with ties,
there exists no strong market clearing price at all, that is, the set PSMC is empty.
However, there exists a unique market clearing price, that is PMC = {v1b = v2b}.
Therefore, again in line with Lemma 6, it holds that PMC is a singleton.

Trade volume and excess. In the market without ties, any price in (v1b , v
2
b ]

maximizes trade volume at 1 and minimizes excess at 0. But at v1b , the trade
excess is equal to 1 and not minimized. In the market with ties, the unique market
clearing price is v1b = v2b , which maximizes trade volume at 1 and minimizes excess
at 1. But every other price in [v1s , v

1
b = v2b ) has the same trade volume and excess.

Walrasian equilibria. In the market without ties, any price P ∈ [v2b , v
1
b ] is a

Walrasian equilibrium price with allocation B∗ = {b1} and S∗ = {s1}. That is
because this market outcome balances trade with one filled order on each market
side. The allocation is individually rational, because v1b ≥ P and v1s ≤ P , and it
is stable, because v2b ≤ P . These are the only equilibrium outcomes, as any price
above v1b or below v1s are not individually rational for buy order b1 or sell order s1,
and any price in the interval [v1s , v2b ) leads to a market outcome that is not stable.
The latter is true, because the unfilled buy order is strictly greater than P . Using
similar reasoning in the market with ties, we find that the price P = v1b = v2b is
the unique Walrasian equilibrium price with allocation B∗ = {b1} or B∗ = {b2}
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and S∗ = {s1}. In line with Proposition 1, the set of equilibrium prices coincides
with the set of market clearing prices that was computed above.

The Double Auction. In the market without ties, the set of market clearing
prices is [v2b , v1b ]. The Double Auction selects the market price according to some
pricing rule. The pricing rule P ∗ = kv2b + (1− k)v1b corresponds to the k-Double
Auction. Note that for k = 0, the Double Auction does not minimize excess. The
allocation is S∗ = {s1} and B∗ = {b1}. In the market with ties, the unique market
clearing price is P ∗ = v2b = v1b . The allocation is S∗ = {s1} and B∗ = {b1} or
B∗ = {b2} (the latter chosen by a fair coin toss). The Double Auction, therefore,
coincides with the k-Double Auction.

6 Conclusion

In this paper, we provide a unified definition of double auctions in finite and
infinite markets. We prove that our Double Auction yields market clearing and
Walrasian equilibrium, that the Double Auction nests as special cases the k-Double
Auction for finite markets (cf. Rustichini et al. 1994) and continuous and strictly
monotone demand and supply models (cf. Mas-Colell et al. 1995; Reny and Perry
2006), and we establish convergence of finite to infinite markets. Importantly,
and in contrast to the previous infinite market literature, we do not impose any
regularity assumptions. Such assumptions are satisfied in some but fail in other
real-world applications, for example, when fees are present (Jantschgi et al., 2022).

Recently, in other settings canonical mechanisms such as deferred acceptance
(Abdulkadiroğlu et al., 2015; Azevedo and Leshno, 2016), serial dictatorship (Che
and Kojima, 2010), and top trading cycle (Leshno and Lo, 2020) were extended
from finite to infinite markets, facilitating the analysis of these mechanisms. We
hope that our unified Double Auction will have similar impact.

A Auxiliary lemmas

This section contains a series of lemmas that are used in the proofs of our main
results. As discussed in Section 3, these lemmas are known in related models.
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We include them for completeness. The proofs are in the Online Supplementary
Appendix C.

Demand and supply. Our first lemmas concern demand and supply. First,
we prove that demand and supply functions are analytically well-behaved.

Lemma 1 (Regularity of demand and supply functions). The demand function
Df (·) is non-increasing, left-continuous and has right limits. The supply function
Sf(·) is non-decreasing, right-continuous and has left limits. The limits can be
expressed as Df (P+) = µB(B>(P )) and Sf (P−) = µS(S<(P )).

We then use Lemma 1 to express demand and supply correspondences.

Lemma 2 (Representation of demand and supply correspondences). It holds that
Dc(P ) = [Df (P+), Df (P )] and Sc(P ) = [Sf (P−), Sf (P )]. Further:

• Df (P ) = Dc(P )⇔ µB(B=(P )) = 0⇔ the demand function is continuous at
P .

• Sf (P ) = Sc(P )⇔ µS(B=(S)) = 0⇔ the supply function is continuous at P .

Market clearing. Next, we show that the set of market clearing prices PMC

can be expressed in terms of demand and supply functions.12

Lemma 3 (PMC via Df and Sf). P is a market clearing price if and only if
Df (P ) ≥ Sf (P ) and Df (P+) ≤ Sf (P ) or Sf (P ) ≥ Df (P ) and Sf (P−) ≤ Df (P ).

The two cases describe on which side of the market there may be excess at
price P . For some of our results, Lemma 3 can be used to determine useful bounds
on the set PMC in terms of demand and supply functions.

Definition (Lower and upper bounds). A price P is a lower bound, if for all
P ′ < P it holds that Df(P

′) > Sf(P
′) and an upper bound, if for all P ′ > P it

holds that Sf (P ′) > Df (P
′).

Lemma 4 (Bounds on PMC). For any price P :

• If P is a lower bound then P ≤ inf PMC; if additionally P ∈ PMC, then
P = minPMC.

12Tatur (2005) mentions a similar construction, when demand and supply functions are given by probability
distributions with jump-discontinuities.
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• If P is an upper bound, then P ≥ supPMC; if additionally P ∈ PMC, then
P = maxPMC.

Next, we discuss the geometrical structure of the set of market clearing prices
and, by Proposition 1, also of the set of Walrasian equilibrium prices.

Lemma 5 (Geometry of PMC). The set of market clearing prices is non-empty,
convex, and closed.

A stronger definition of market clearing that is sometimes used colloquially
requires demand and supply functions to be equal at a given price.

Definition (Strong market clearing price). A price P is a strong market clearing
price if Df(P ) = Sf(P ). Denote the set of all strong market clearing prices by
PSMC .

Our example in Section 5 shows that there might not exist a strong market
clearing price. The following theorem discusses the geometric properties of the
set of strong market clearing prices PSMC and shows that the set of market
clearing prices PMC can be viewed as the minimal extension of PSMC to guarantee
existence.

Lemma 6 (Geometry of PSMC). The set PSMC is a convex subset of V . Every
strong market clearing price is a market clearing price, that is PSMC ⊂ PMC.
The set PMC \ PSMC has Lebesgue-measure zero. Concretely, if PSMC 6= ∅, then
PMC = PSMC, and if PSMC = ∅, then PMC is a singleton.

In finite markets with m buy orders and n sell orders, Rustichini et al. (1994)
show that any price in (v(m), v(m+1)) is a strong market clearing price, hence:

Lemma 7 (Strong market clearing). In finite markets, if v(m) 6= v(m+1), then for
k ∈ (0, 1) the k-Double Auction results in a strong market clearing price. That is,(
v(m), v(m+1)

)
⊆ PSMC.

However, if k ∈ {0, 1}, the k-Double auction might not result in a strong
market clearing price.13 Moreover, if ties exist, the set of strong market clearing
prices might be empty, see Section 5.14

13These two mechanisms, called the seller’s and buyer’s Double Auction, are often studied separately from
the case k ∈ (0, 1) (Satterthwaite and Williams, 1989b; Williams, 1991; Satterthwaite et al., 2014, 2022).

14Wilson (1985); Rustichini et al. (1994) acknowledge that if v(m) = v(m+1), excess might exist and the
k-Double Auction may require rationing.
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We extend Lemma 7 to solidify the folk-wisdom that the k-Double Auction in
finite markets results in and is fully characterized by market clearing, even in the
case of ties.15

Lemma 8 (Market clearing). In finite markets, for k ∈ [0, 1], the k-Double
Auction results in a market clearing price. Furthermore,

[
v(m), v(m+1)

]
= PMC.

Connection of market clearing to trade volume and excess. We show
that market clearing implies that trade volume is maximized, and that strong
market clearing implies that excess is minimized.

Lemma 9 (PMC maximizes Q(·)). A market clearing price maximizes the trade
volume.

Lemma 10 (PSMC minimizes Ex(·)). A strong market clearing price minimizes
the excess.

Maximizing trade volume and minimizing excess are the two appealing prop-
erties from a social welfare perspective, but they are not sufficient to characterize
a double auction. On the one hand, there may exist prices that maximize trade
volume and minimize excess but are not market clearing. On the other hand,
there also may exist two market clearing prices with different excess. Section 5
provides examples of such markets.

Uniform Rationing in the Double Auction A standard rationing rule for
Double Auctions is the uniform rationing rule. Recall that buy orders in B̃ are
selected uniformly at random from B=(P ∗) if the probability P[b ∈ B̃] is the same
for all b ∈ B=(P ∗). The random selection from S=(P ∗) is defined analogously.

Lemma 11 (Uniform Rationing). The uniform rationing rule is well-defined for
any market instance in finite and infinite markets.

15This result is already present without a formal proof in the literature. Rustichini et al. (1994) justifies
it with Lemma 7, and Cripps and Swinkels (2006) states that it can be seen after “a little time with the
appropriate figure” of demand and supply schedules. Both do not provide a rigorous definition of market
clearing prices.
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B Proofs of the Main Results

B.1 Proof of Proposition 1

Proof. Recall that P is a market clearing price if and only if (i) Df (P ) ≥ Sf (P )

and Df (P+) ≤ Sf (P ) or (ii) Sf (P ) ≥ Df (P ) and Sf (P−) ≤ Df (P ) (Lemma 3).
As a shorthand notation for our proofs, we will say that a market clearing price
is of type I, if the first set of conditions holds, and of type II, if the second set of
conditions hold.

First, we prove that PMC ⊂ PEQ. Consider that P ∗ is of type I, that is
Df(P

∗) ≥ Sf(P
∗) and Df(P

∗+) ≤ Sf(P
∗). Set S∗ = S≤(P ∗). Consider the

set B>(P ∗). Lemma 1 shows that Df(P
∗+) = µB(B>(P ∗)). Let x = Sf(P

∗) −
µB(B>(P ∗)) ≥ 0 and let B̃ be a subset of B=(P ∗) with µB-measure equal to x.
Such a set exists because Df (P

∗) = µB(B≥(P ∗)) = µB(B>(P ∗)) + µB(B=(P ∗)) ≥
Sf(P

∗) and Df(P
∗+) = µB(B>(P ∗)) ≤ Sf(P

∗). Set B∗ = B>P ∗ ∪ B̃. We
show that (P ∗,S∗,B∗) is a Walrasian equilibrium. It balances trade, because
µB(B∗) = µB(B>(P ∗)) + µB((̃B)) = µB(B>(P ∗)) + Sf(P

∗) − µB(B>(P ∗)). Indi-
vidual rationality follows, because B∗ ⊂ B≥(P ∗) and S∗ = S≤(P ∗). It is stable,
because B>(P ∗) ⊂ B∗ and S<(P ∗) ⊂ S∗, as B∗ = B>P ∗ ∪ B̃ and S∗ = S≤(P ∗). If
there exists a market clearing price P ∗ of type II, that is Sf(P ∗) ≥ Df(P

∗) and
Sf (P

∗−) ≤ Df (P
∗), one can construct the Walrasian equilibrium analogously.

Second, we show that P /∈ PMC ⇒ P /∈ PEQ. One of two cases must
hold: (i) Df(P ) > Sf(P ) and Df(P−) > Sf(P ) or (ii) Sf(P ) > Df(P ) and
Sf(P−) > Df(P ). For (i) there exists a price P ′ > P with Df(P

′) > Sf(P ).
Assume that there exist sets B∗ and S∗, such that (P,B∗,S∗) is a Walrasian
equilibrium. Individual rationality implies that B∗ ⊂ B≥(P ) and S∗ ⊂ S≤(P )
hold. Next, stability implies that B>(P ) ⊂ B∗ and S<(P ) ⊂ S∗ hold. Those
two inclusions imply that µB(B≥(P )) ≥ µB(B∗) ≥ µB(B>(P )) and µS(S≤(P )) ≥
µS(S∗) ≥ µS(S<(P )).

For a price P ′ > P it holds that µB(B>(P )) ≥ µB(B≥(P ′)). Hence, µB(B∗) ≥
µB(B>(P )) ≥ µB(B≥(P ′)) = Df(P

′) > Sf(P ) ≥ µS(S∗). This proves that
(P,B∗,S∗) is not a Walrasian equilibrium, because it does not balance trade. For
(ii), the proof is analogous.
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B.2 Proof of Theorem 1

Proof. We show in Lemma 5 in Appendix A that the set of market clearing
prices PMC is non-empty, compact, and convex, which implies that the interval
[minPMC ,maxPMC ] is well-defined. By Proposition 1 this set coincides with
PEQ, proving that the Double Auction results in market clearing and Walrasian
equilibrium. Lemma 9 in Appendix A proves that every market clearing price
maximizes the trade volume. It is shown in the proof of Proposition 1 that an
allocation exists with S∗ = S≤(P ∗)∪ S̃ and B∗ = B>(P ∗)∪ B̃, where B̃ ⊂ B=(P ∗),
S̃ ⊂ S=(P ∗) and at least one of the two sets is empty.

B.3 Proof of Theorem 2

Proof. For finite markets, it is proven in Lemma 8 in Appendix A that the set
of market clearing prices PMC is equal to the interval

[
v(m), v(m+1)

]
. Therefore,

the price-setting rule P ∗ = k ·minPMC + (1− k) ·maxPMC leads to the market
price chosen by the k-Double Auction. Moreover, the allocation rules of the
Double Auction and the k-Double Auction coincide by construction. In infinite
markets with continuous and strictly monotone demand and supply functions,
by assumption, there exists a market clearing price P ∗ with Df(P

∗) = Sf(P
∗).

Because demand and supply functions are continuous, Lemma 2 in Appendix A
implies that Df(P ) = Dc(P ) and Sf(P ) = Sc(P ) for all P ∈ V . The strict
monotonicity of demand and supply functions then implies that this market
clearing price is unique, that is PMC = {P ∗}. This proves that the Double
Auction always chooses P ∗ as the market price. Moreover, it holds that Ex(P ∗) =
0. Therefore, by construction, the Double Auction results in the allocation
B∗ = B≥(P ∗) and S∗ = S≤(P ∗), which coincides with the allocation in the
textbook models of continuous and strictly monotone demand and supply.

B.4 Proof of Theorem 3

Proof. To prove that limk→∞ d(minPkMC ,PMC) = 0, we show that for any P <

minPMC there exists a market size k0, such that for all k ≥ k0 it holds that
minPkMC > P . To show that minPkMC > P , Lemma 4 in Appendix A implies
that it suffices to show that there exists γ > 0 with Dk

f(P + γ) > Skf (P + γ).
Because P < minPMC by assumption, there exists γ > 0 with Df(P + γ) >
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Sf(P + γ). Let α > 0 be the difference of demand and supply at P + γ, that
is α = Df(P + γ) − Sf(P + γ). It follows from the uniform convergence of
demand and supply, that for any ε > 0 there exists k0 such that for all k ≥ k0

|Df(P + γ) −Dk
f(P + γ)| ≤ ε and |Sf(P + γ) − Skf (P + γ)| ≤ ε. For such k, it

holds that Dk
f(P + γ)− Skf (P + γ) ≥ Df(P + γ)− Sf(P + γ)− 2ε = α− 2ε. If

ε > 0 was chosen such that ε < α/2, then Dk
f(P + γ) − Skf (P + γ) > 0, which

shows that minPkMC > P . Note that this also implies that maxPkMC > P . It
can be proven analogously that for any P > maxPMC there exists a market size
k0, such that for all k ≥ n0 it holds that maxPkMC < P , which also implies that
minPkMC < P . Combining these bounds yields that limk→∞ d(minPkMC ,PMC) = 0

and limk→∞ d(maxPkMC ,PMC) = 0.

B.5 Proof of Theorem 4

Proof. Let n ≥ 1 denote the number of buy orders and the number of sell
orders. The bids of buy orders are n independent random variables v1b , ..., vnb
with cumulative distribution function FB(P ) = 1 − Df (P+)/β. The asks of sell
orders are n independent random variables v1s , ..., vns with cumulative distribu-
tion function FS(P ) = Sf (P )/σ. For A ⊂ V , define µv,nB (A) =

∑n
i=1 δvi

b
(A)/n and

µv,nS (A) =
∑n

j=1 δvj
s
(A)/n. Demand and supply functions are then the random vari-

ables Dn
f (P ) = µv,nB ([P, v]) and Snf (P ) = µv,nS ([v, P ]). The Glivenko-Cantelli The-

orem implies that |Dn
f −Df |∞ → 0 and |Snf −Sf |∞ → 0 almost surely. Hence, the

random growing sequence of finite markets with random value measures µv,nB and
µv,nS obtained by independent sampling converges almost surely to (B,S, µvB, µvS).
It follows from the Vapnis-Chervonenkis Theorem,16 that for fixed ε > 0, there exist
constants α1, α2, β1, β2 > 0 such that P

[
supP∈R |Dn

f (P )−Df (P )| > ε
]
≤ α1e

−β1n,
P
[
supP∈R |Snf (P )− Sf (P )| > ε

]
≤ α2e

−β2n. As the bids and asks are independent,
the random variables Dn

f and Snf are independent as well. Hence,

P
[
sup
P∈R
|Snf (P )− Sf (P )| > ε ∧ sup

P∈R
|Snf (P )− Sf (P )| > ε

]
≤ αe−βn

holds with α = α1 · α2 and β = β1 + β2.

16See Vapnik and Chervonenkis (1971) and Devroye et al. (2013). The important requirement for the
theorem to apply is that the Vapnik-Chervonenkis dimensions of the class of sets {v ∈ V : v ≤ P} and
{v ∈ V : v ≥ P} are finite.
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C Online Supplementary Appendix

Proofs of the Auxiliary Lemmas in Appendix A

Proof of Lemma 1. Let µvS be the pushforward measures of µS with respect to
vS, that is µvS(·) = µS(v

−1
S (·)). µvS is σ-additive and finite on V . Denote by V (P )

the interval [v, P ]. It holds that Sf (P ) = µvS(V (P )). Moreover, if P1 > P2 , then
V (P2) ⊂ V (P1). The σ-additivity of µvS yields

Sf (P1) = µvS(V (P1)) ≥ µvS(V (P2)) = Sf (P1),

which proves that Sf (·) is non-decreasing.
Every monotonic function has limits from the right and the left for every point

in its domain. Next, consider a strictly decreasing sequence of prices Pn ↓ P .
V (Pn) is a decreasing sequence of sets, that is V (Pn+1) ⊂ V (Pn). It holds that
limn→∞ V (Pn) =

⋂∞
n=1 V (Pn) = V (P ). As a finite measure on R, µvS is continuous

from above, see e.g., Folland (1999). That is if {Ai}i ⊂ V is a sequence of sets
with A1 ⊃ A2 ⊃ A3 ⊃ ..., then µvS (

⋂∞
i=1Ai) = limi→∞ µ

v
S(Ai). This yields

lim
Pn↓P

Sf (Pn) = lim
n→∞

µvS(V (Pn)) = µvS

(
∞⋂
n=1

V (Pn)

)
= µvS(V (P )) = Sf (P ),

which proves the right-continuity of Sf (·).
To show that Sf(P−) = µS(S<(P )) = µvS([v, P )), note µvS is a σ-additive

Borel-measure on R and therefore regular, see Bogachev (2007). That is, for
all Borel-sets A µvS(A) = sup{µvS(F )|F ⊂ A,F compact, Borel}. It is therefore
sufficient to approximate the interval [v, P ) by compact sets [v, P ′] with P ′ < P .
It finally holds that

sup{µvS(F )|F ⊂ A,F compact, Borel} = lim
P ′↑P

µvS((t, P
′]) = lim

P ′↑P
Sf (P

′) = Sf (P−),

which implies that Sf(P−) = µS(S<(P )). The proof that demand is non-
increasing, left-continuous, and has right limits, as well as Df (P+) = µB(B>(P ))
is analogous.

Proof of Lemma 2. Recall that Df (P ) = µB(B≥(P )) and Sf (P ) = µS(S≤(P )). It
follows from Lemma 1 that Df(P+) = µB(B>(P )) and Sf(P−) = µS(S<(P )),
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which implies

Dc(P ) = [µB(B>(P )), µB(B≥(P ))] = [Df (P+), Df (P )] and

Sc(P ) = [µS(S<(P )), µS(S≤(P ))] = [Sf (P−), Sf (P )].

The σ-additivity of µB implies that

Df (P ) = µB(B≥(P )) = µB(B>(P )) + µB(B=(P )) = Df (P+) + µB(B=(P )).

Because Df(P ) = Dc(P ) if and only if Df(P+) = Df(P ), this is equivalent to
µB(B=(P )) = 0. Furthermore, Df (P+) = Df (P ), that is, Df is right-continuous
at P . As Df(·) is left-continuous by Lemma 1, Df(P ) = Dc(P ) is equivalent to
continuity at P . The proof for supply is analogous.

Proof of Lemma 3. If Df(P ) ≥ Sf(P ), then Dc(P ) ∩ Sc(P ) 6= ∅ ⇔ Sf(P−) ≥
Df (P ). If Df (P ) ≤ Sf (P ), then Dc(P ) ∩ Sc(P ) 6= ∅ ⇔ Df (P+) ≥ Sf (P ).

Proof of Lemma 4. Consider that P is a lower bound. It suffices to prove that for a
price P ′ < P P ′ /∈ PMC holds. If P ∈ PMC , it follows directly that P = minPMC .
Because Df(P

′) > Sf(P
′), it is sufficient to prove that Df(P

′−) > Sf(P
′). For

P ′′ in (P ′, P ) it holds that Df(P
′′) > Sf(P

′′). The monotonicity of Df(·) and
Sf (·) yields

Df (P
′−) ≥ Df (P

′′) > Sf (P
′′) ≥ Sf (P

′).

If P is an upper bound, the proof is analogous.

Proof of Lemma 5. First, we show that PMC is non-empty. Consider the set
P̂ = {P : Df (P ) ≥ Sf (P )}. The monotonicity of Df (·) and Sf (·) yields that P̂ is
convex. For P < v it holds that Df (P ) = µB(B) > 0 = Sf (P ), proving that P̂ is
non-empty. For P > v it holds that Df (P ) = 0 < µS(S∗) = Sf (P ), proving that
P̂ is bounded from above. For such a set the supremum P ∗ = sup P̂ exists and is
unique. We show that P ∗ ∈ PMC . Two cases need to be considered separately:
(i) P ∗ ∈ P̂ and (ii) P ∗ /∈ P̂ .

For (i), Df(P
∗) ≥ Sf(P

∗) and for all P ′ > P ∗ Df(P
′) < Sf(P

′). The right-
continuity of Sf(·) implies Df(P

′+) ≤ Sf(P
′), which proves that P is a market

clearing price of type I.
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For (ii), Df (P
∗) < Sf (P

∗) holds. The monotonicity of Df (·) and Sf (·) implies
that for all P ′ < P ∗ Df (P

′) ≥ Sf (P
′) holds. Left-continuity of Df (·) yields that

Df (P
′) ≥ Sf (P

′−), which proves that P ∗ is a market clearing price of type II. We
will show below in the proof of Lemma 6 that the set of strong market clearing
prices PSMC is convex. The same proof proceeds to show that if PSMC 6= ∅, then
PMC = PSMC , and if PSMC = ∅, then PMC is a singleton. This proves that PMC

is convex and closed.

Proof of Lemma 6. We first show that PSMC is convex. As the empty set is convex
by convention, assume that PSMC 6= ∅. Consider P1, P2 ∈ PSMC with P1 ≤ P2.
The monotonicity of Df (·) and Sf (·) implies that Df (P1) ≥ Df (P2) = Sf(P2) ≥
Sf (P1), which proves that Df (·) and Sf (·) are constant on [P1, P2]. Therefore, for
any price P ∈ [P1, P2] P ∈ PSMC holds. For P < v Df (P ) = µB(B) > 0 = Sf (P )

and for P > v Df (P ) = 0 < µS(S∗) = Sf (P ) holds, which implies that PSMC ⊂ V .
Next, we show that PSMC ⊂ PMC . P ∈ PSMC ⇔ Df(P ) = Sf(P ). Because

Df (·) is non-increasing it follows that Df (P+) ≥ Df (P ) = Sf (P ), which proves
that P is a market clearing price of type I. Because Sf(·) is non-decreasing it
follows that Sf (P−) ≤ Sf (P ) = Df (P ), which proves that P is a market clearing
price of type II.

Next, assume that PSMC = ∅. To prove that P ∗ from the proof of Lemma 5
above is the unique market clearing price, it suffices to prove by Lemma 4 that P ∗

is both a lower and upper bound. P ∗ is either of type I, that is Df (P
∗) > Sf (P

∗)

and Df(P
∗+) ≤ Sf(P

∗) or of type II, that is Sf(P ∗) > Df(P
∗) and Sf(P ∗−) ≤

Df(P
∗). It follows from monotonicity of Df(·) and Sf(·) and the emptyness of

PMC that for all P ′ < P it holds that Df (P
′) > Sf (P

′) and for all P ′ > P it holds
that Df (P

′) < Sf (P
′). Therefore P ∗ is indeed both a lower and upper bound.

Finally, assume that the interval PSMC 6= ∅. To show that PMC = PSMC , by
Lemma 4 it suffices to prove that P = inf PSMC is both a market clearing price
and lower bound and P = supPSMC is both a market clearing price and an upper
bound. Df(P ) ≥ Sf(P ) by monotonicity of Df(·) and Sf(·). By definition, for
every P with P > P > P it holds that Df(P ) = Sf(P ). It follows from the left
continuity of Sf (·) that Df (P+) = Sf (P ), which proves that P ∈ PMC . For every
P ′ < P we have that Df(P

′) > Sf(P
′). Therefore P is a lower bound. Similar

arguments yield that P ∈ PMC is an upper bound.

Proof of Lemma 7. We show that P ∈ (v(m), v(m+1)) ⇒ P ∈ PSMC . Suppose
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that Df(P ) = k ≥ 0. It holds that Df(P ) = Df(v
(m+1)) and Sf(P ) = Sf(v

(m)).
The set {v(m+1), ..., v(m+n)} has cardinality n and the number of bids in it is
Df(v

(m+1)) = k. Hence, the number of asks in it is n − k. As there is a total
number of n asks, the number of asks in the set {v(1), ..., v(m)} is k. As this
number is equal to Sf (v(m)), it holds that Sf (P ) = k = Df (P ), which shows that
P ∈ PSMC .

Proof of Lemma 8. There are two cases: (i) v(m) 6= v(m+1), and (ii) v(m) = v(m+1).
For (i), Lemma 7 shows that P ∈ (v(m), v(m+1))⇒ P ∈ PSMC , and hence by

Lemma 6 P ∈ PMC . Next, consider v(m). Sf (v(m)) = Sf (P ) for P in (v(m), v(m+1)).
If there is a bid equal to v(m), it holds that Df(v

(m)) > Df(P ). If not, then
Df (v

(m)) = Df (P ). This shows that Df (v
(m)) ≥ Df (P ). Hence,

Df (v
(m)) ≥ Df (P ) = Sf (P ) = Sf (v

(m)).

To show that v(m) ∈ PMC , it is by Lemma 2 sufficient to show that Df (v
(m)+) ≤

Sf (v
(m)). Df (v

(m)+) = Df (P ) holds, as there are no bids or asks in (v(m), v(m+1)).
Therefore, Df(v

(m)+) = Df(P ) = Sf(P ) = Sf(v
(m)). A similar argument shows

that v(m+1) ∈ PMC . Finally, we show that v(m+1) is an upper bound and v(m) is
a lower bound, which, by Lemma 4, implies that v(m) = minPMC and v(m+1) =

maxPMC , which finishes the proof for (i). Consider P > v(m+1). Df (P ) < Sf (P )

holds, as demand decreases or supply increases due to bids and asks at v(m+1).
Therefore v(m+1) is an upper bound. Similar arguments yield that v(m) is a lower
bound.

For (ii), write v = v(m) = v(m+1) for ease of notation. We will show v ∈ PMC

and that this price is both a lower and upper bound. Lemma 4 then implies that
PMC = {v}. For a relation R ∈ {≥, >,=, <,≤}, denote by vR the number of
bids and asks (strictly) above, below or equal to v. Denote by vR,B and vR,S the
restriction to either bids or asks. It holds that

v< ≤ m− 1 , v= ≥ 2 , v> ≤ n− 1, ,and v< + v= + v> = m+ n.

Note that Df (v) = v≥,B = v=,B + v>,B ≥ 1. That is because there are at most
m− 1 bids and asks strictly below v and there is a total of m bids, which proves
that at least one bid is greater or equal to v. Because the total number of asks is
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n,

Sf (v) = v≤,S = n− v>,S = n− v> + v>,B.

Next, we prove that v is an upper bound. Consider P > v. Df(P ) ≤ v>,B

holds, because v=,B bids at v are lost and Sf (P ) ≥ n− v> + v>,B, because supply
is non-decreasing. Hence, Sf(P ) − Df(P ) ≥ n − v>. v> ≤ n − 1 implies that
Sf (P )−Df (P ) ≥ 1, which yields Sf (P ) > Df (P ).

Finally, we prove that v is a lower bound. Consider P < v. It holds that
Sf(P ) ≤ n − v> + v>,B − v= + v=,B, because v= − v=,B asks at v are lost and
Df(P ) ≥ v=,B + v>,B, because demand is non-increasing. This implies that
Df(P ) − Sf(P ) ≥ v= + v> − n. But it follows from v< + v= + v> = m + n

and v< ≤ m − 1 that v= + v> = m + n − v< ≥ n + 1, which implies that
Df (P )− Sf (P ) ≥ 1 > 0. Therefore, Df (P ) > Sf (P ).

Proof of Lemma 9. Consider P ∈ PMC . Assume that P is of type I, that is,
Df(P ) ≥ Sf(P ) and Df(P+) ≤ Sf(P ). Then Q(P ) = min(Df(P ), Sf(P )) =

Sf(P ) holds. For any price P ′ < P , Sf(P ′) ≤ Sf(P ) holds, because Sf(·) is
non-decreasing. Therefore Q(P ′) ≤ Q(P ). For any price P ′′ > P , it holds that
D(P ′′) ≤ D(P+), because Df (·) is non-increasing. Sf (P ) ≥ Df (P+) implies that
Sf(P ) ≥ Df(P

′′). Therefore Q(P ′′) ≤ Q(P ), which proves that P maximizes
the trade volume. The proof for a market clearing price of type II proceeds in
analogy.

Proof of Lemma 10. P ∈ PSMC ⇔ Df (P ) = Sf (P ) and hence Ex(P ) = 0.

Proof of Lemma 11. In finite markets, it suffices to show that for a discrete set
V with x elements, it is possible to select a subset Ṽ with y < x elements, such
that the probability of being selected is the same for each element. If y = 0, set
Ṽ = ∅. Otherwise, order V = {v1, ..., vx}. Set Ṽ = {ṽ1, ...ṽy}, where ṽi is chosen
uniformly at random from the set Ṽi = V \ {ṽ1, ..., ṽi−1} with probability 1

x−(i−1) ,
where Ṽ1 = V . It follows that for any v ∈ V , it holds that P[v ∈ Ṽ ] = y

x
.

In infinite markets, we consider a bounded Borel set V ⊂ R, such that its
Lebesgue measure λ(V ) is equal to x. We prove that for any y < x it is possible to
select a subset Ṽ with Lebesgue measure y, such that each point of V is selected
with the same probability. Denote by v and v the supremum and infimum of V .
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For any Borel set, there exists a uniform probability distribution with density
equal to 1/x on V . Using this distribution select a point t0 uniformly at random.
For 0 ≤ ε ≤ v − v, define the following set

V ε
v0

=

[v0, v0 + ε] ∩ V for ε ≤ v − v0
([v0, v] ∩ V ) ∪ ([v, v + ε− (v − v0)] ∩ V ) for v − v0 < ε ≤ v − v

.

Intuitively, the set V ε
v0

is constructed by starting at the randomly selected point
v0 and including all points of V to its right, until the distance ε is reached.
If the supremum of V is reached, the construction proceeds at the infimum
of V . Define the function fv0(ε) = λ(V ε

v0
). This function is well-defined for

ε ∈ [0, v − v], it is nondecreasing and continuous, and it holds that fv0(0) = 0

and fv0(v − v) = x. It follows from the Intermediate Value Theorem, that there
exists ε̃ with fv0(ε̃) = y. Because fv0(·) is non-decreasing, this set is convex.
Let ε∗ be the infimum of this set. Because fv0(·) is continuous, it holds that
fv0(ε

∗) = fv0(limε↓ε∗ ε) = limε↓ε∗ fv0(ε) = y. Therefore the set V ε∗
v0

is a random set
with Lebesgue measure y. Finally, it is a straight-forward computation that for
all v ∈ V it holds that P[v ∈ V ε∗

v0
] = x

y
≡ const.
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